
 — Open Source Software — Page 412 of 36 —

 412

LEGAL ISSUES FOR THE USE OF FREE AND OPEN
SOURCE SOFTWARE IN GOVERNMENT∗

BRIAN FITZGERALD† AND NIC SUZOR‡

[This article explains the notion of free and open source software and the reasons why governments
throughout the world are giving it close consideration. In particular, it highlights key legal issues
facing the adoption and development of free and open source software by governments. From the
aspect of government procurement, the article examines the models used by governments to create a
level playing field for the supply of free and open source software, intellectual property warranties
and indemnities and the operation of the Trade Practices Act 1974 (Cth). In terms of government
development of free and open source software, the article considers the licensing mechanisms that
will be implemented in the development and distribution of such software. In the final section, the
article assesses the threat software patents and the current SCO litigation provide for free and open
source software. The article concludes by emphasising that governments need to be fully aware of
this landscape to assess what is the most effective technology available.]

CONTENTS

I Introduction .. 413
II The Free Software Model... 415

A What Is ‘Free Software’? ... 415
B GPL and Copyleft Licences ... 416
C The Open Source Initiative .. 419
D Tension between ‘Open Source’ and ‘Free’ Software................................ 420

III Benefits of FOSS for Governments.. 421
A Cost .. 423
B Open Standards .. 424
C Security .. 424
D Providing Information Resources to the Community 425

IV Government Procurement and Supply of Free Software.. 427
A Government Procurement Practices... 428

 ∗ We owe thanks to Graham Bassett (Barrister-at-Law, Lismore Chambers, New South Wales) for

assisting us with the development of this paper. In particular, Graham helped us with the early
sections of the paper and Table 1. This is a significantly revised version of a paper presented at
the Linux Conference Australia in Adelaide, January 2004; Asian Law Institute Conference in
Singapore, May 2004; and the Red Hat–Phillips Fox Free and Open Source Software Seminars
in Canberra, Melbourne and Brisbane, November 2004. We would also like to acknowledge the
efforts of the following people: Steve Alford and David Mackey of the Australian Government
Information Management Office, for generating discussion of these issues in Australia; Mark
Webbink, Vice-President of Red Hat Inc, for travelling to Australia twice in recent years to
support discussion of these issues; Daniel Ravicher, senior counsel of the Free Software Founda-
tion, for highlighting some finer points in this legal landscape during his recent visit; and Profes-
sor Eben Moglen, for his work as chief legal counsel for the Free Software Foundation. We
thank all of them for the assistance they have provided to us. We were also fortunate to hear
Richard Stallman talk in Brisbane in September 2004 and have benefited from hearing his latest
thinking directly from the source.

 † BA (Griff), LLB (Hons) (QUT), BCL (Oxon), LLM (Harv), PhD (Griff); Head of the School of
Law, Queensland University of Technology; bf.fitzgerald@qut.edu.au.

 ‡ BInfTech, LLB (QUT); Research Assistant, Queensland University of Technology;
nic@suzor.com.

— Open Source Software — Page 413 of 36 —

2005] Free and Open Source Software in Government 413

B Indemnities for Title and Warranties for Performance............................... 431
C Requirements of the Australian Trade Practices Act 431

V Government as a Developer of Free Software.. 433
A The Obligation to Redistribute Source Code ... 434
B Enforceability of the GPL .. 436
C Layering and Combining of Licences .. 438
D Dual Licensing ... 440

VI Threats to the FOSS Movement ... 440
A Software Patents... 441
B The SCO v IBM Litigation ... 444

1 UNIX and GNU/Linux — A Brief History 444
2 The Litigation .. 445

VII Conclusion: The Choice to Be Made.. 447

I INTRODUCTION

A grassroots movement started by free software guru Richard Stallman in the
1980s has revolutionised the way we think about the development and distribu-
tion of computer software. Stallman was frustrated by the fact that he could not
access the source code1 of software that was controlling a Xerox printer in his
lab at Massachusetts Institute of Technology (‘MIT’). His quest to open up
access to source code in software has led to the creation of a powerful form of
collaboration known as the free software movement.2

Free software is distributed with the source code disclosed, or open, at the
point of distribution. Non-free or proprietary software is distributed with no
source code disclosed, meaning that anyone who wishes to discover that source
code must engage in a difficult and time-consuming process of reverse engineer-
ing.3 Many developers fear that openly distributing program source code will
promote free-riding on community-based developments because it allows
recipients to use software to their advantage and profit without giving back to
the community.

In order to remedy the most extreme examples of this, Stallman ensured that
the source code he distributed was covered by a legally-binding obligation: the

 1 ‘Source code’ refers to the human-readable instructions that comprise a computer program.

Source code files must be processed by a utility known as a ‘compiler’, which translates the
instructions into binary machine code capable of execution by a computer. In general, modifica-
tions to a program’s functionality cannot be made without access to its source code: Wikipedia
contributors, Source Code (7 July 2005) Wikipedia: The Free Encyclopedia <http://en.
wikipedia.org/wiki/Source_code>.

 2 See generally Brian Fitzgerald and Graham Bassett (eds), Legal Issues relating to Free and
Open Source Software (2004) <http://www.law.qut.edu.au/files/open_source_book.pdf>; Brian
Fitzgerald and Graham Bassett, ‘Legal Issues relating to Free and Open Source Software’ (2001)
12 Journal of Law and Information Science 159.

 3 Reverse engineering involves ‘decompiling’ a program’s machine code into partially-readable
source code. However, the process is laborious and does not enable discovery of all aspects of
the program’s workings. See generally Mike Perry and Nasko Oskov, Introduction to Reverse
Engineering Software (2004) Association for Computing Machinery <http://www.acm.uiuc.edu/
sigmil/RevEng>.

— Open Source Software — Page 414 of 36 —

414 Melbourne University Law Review [Vol 29

GNU4 General Public License (‘GPL’).5 The GPL obliges those who modify free
software code to disclose their modifications to any recipient of the altered
software, which in essence means the whole community. In this way, the GPL
attaches itself to the copyright in software code owned by a licensor, so as to
oblige recipients to share their improvements for the benefit of all users.

This was Stallman’s powerful insight: copyright in software code can be used
not only to restrict access and exploit its benefits for monetary reward, but also
to maintain open access for downstream users and developers. Thus, if software
is released with free access to its source code, any improvements made by its
users must be similarly disclosed.6

Today, many governments are expressing interest in the free software model,
and the private sector is not far behind. Some governments have already begun
the task of migrating to the use of free software in the public sector. The open
source GNU/Linux operating system now rivals Microsoft Windows, at least at
an institutional level.7 The Australian Government Information Management
Office (‘AGIMO’) recognises that the use of free and open source software is
‘particularly widespread in areas such as network infrastructure, single-purpose
computer servers, security, internet and intranet applications, and network
communications’ in both the private and public sectors.8 The adoption of
GNU/Linux and applications like OpenOffice and Mozilla Firefox for desktop

 4 ‘GNU’ is a recursive acronym for ‘GNU’s Not Unix’:

 A recursive acronym is an acronym which refers to itself in the expression for which it stands,
similar to a recursive abbreviation. The earliest example is perhaps the credit card VISA,
which was named in 1976 as a recursive acronym for VISA International Service Association.
In computing, it soon became a hackish (and especially MIT) tradition to choose acronyms
and abbreviations which referred humorously to themselves or to other abbreviations. Perhaps
the earliest example in this context, from about 1977 or 1978, is TINT (‘TINT Is Not Teco’),
an editor for MagicSix.

 Wikipedia contributors, Recursive Acronym (2005) Wikipedia: The Free Encyclopedia <http://
en.wikipedia.org/wiki/Recursive_acronym>.

 5 Free Software Foundation, The GNU General Public License: Version 2.0 (June 1991) The GNU
Project <http://www.gnu.org/licenses/gpl.html>.

 6 For a detailed overview of the processes of and motivations for peer- and user-led production, of
which free software is the prime example, see Yochai Benkler, ‘Coase’s Penguin, or, Linux and
The Nature of the Firm’ (2002) 112 Yale Law Journal 369; Josh Lerner and Jean Tirole, ‘Some
Simple Economics of Open Source’ (2002) 50 Journal of Industrial Economics 197; Eric von
Hippel, ‘Innovation by User Communities: Learning from Open Source Software’ (2001) 42
Sloan Management Review 82. Benkler’s key point is that, in certain circumstances, peer pro-
duction can most efficiently bring together the best intellects for the job. This is possible because
it has the capacity to utilise a vast distributed network of knowledge, which in certain circum-
stances is far superior to any other formally- or traditionally-organised mode of knowledge
production. Benkler explains that motivation to participate in sharing of knowledge through peer
production is, on current evidence, reasonably achievable due to ‘indirect appropriation’ —
including money, design of the end product, and pleasure or social profile gained through in-
volvement in peer production: at 424–5.

 7 See generally Gartner Group, A Final Report for the Australian Taxation Office: Open Source
Study (2003) <http://www.ato.gov.au/content/downloads/OpenSourceStudyFinal.pdf> (‘Gartner
Report’).

 8 AGIMO, A Guide to Open Source Software for Australian Government Agencies (2005)
10 <http://www.sourceit.gov.au/data/assets/pdf_file/42065/A_Guide_to_Open_Source_Software
.pdf>. Netcraft, a respected internet research and analysis organisation, suggests in its most
recent survey that over 69 per cent of all active websites use the free Apache web server:
Netcraft, June 2005 Web Server Survey (1 June 2005) <http://news.netcraft.com/archives/
2005/06/01/june_2005_web_server_survey.html>.

— Open Source Software — Page 415 of 36 —

2005] Free and Open Source Software in Government 415

computers has not been as rapid, but there is growing interest evident amongst
large-scale government, business and end users.9

This article highlights the key issues facing governments in adopting and
developing free software. Part III considers several benefits associated with
government usage of free software. Part IV explores how issues of procurement,
intellectual property infringement and non-excludable warranties interact with
the development and supply of free software in the public sector. Part V deals
with licensing issues in public sector development. In Part VI, we consider
threats to the free software movement, including software patents and recent
litigation against its adopters. We conclude that there are significant policy
arguments in favour of governments adopting free software in appropriate cases,
and a solid, informed analysis of the benefits and risks involved should be
undertaken when evaluating proposed software solutions in the public sector. In
order to fully appreciate these issues, we need to start with an understanding of
the concept of free software and the most important free software licences.

I I THE FREE SOFTWARE MODEL

A What Is ‘Free Software’?

Richard Stallman, founder of the Free Software Foundation (‘FSF’), describes
four values embodied in the phrase ‘free software’:

• the freedom to run the program, for any purpose (‘freedom 0’);
• the freedom to study how the program works, and adapt it to your needs

(‘freedom 1’). Access to the source code is a precondition for this;
• the freedom to redistribute copies so you can help your neighbour (‘freedom

2’); and
• the freedom to improve the program and release your improvements to the

public, so that the whole community benefits (‘freedom 3’). Access to the
source code is a precondition for this.10

Free software is not free because it has no price; it is free because it embodies
values that enhance liberty for users and programmers. As Stallman points out,
‘when I speak of free software, I’m referring to freedom, not price. So think of
free speech, not free beer.’11

Alongside the support of the open source developer community, it is through
the legal mechanism of the licence that the free software model is implemented

 9 Elizabeth Millard, Firefox Continues to Gain Browser Share (18 July 2005) CIO Today <http://

www.cio-today.com/news/Firefox-Continues-To-Gain-Share/story.xhtml?story_id=102003F7F7
R0>.

 10 FSF, The Free Software Definition (27 October 2001) <http://www.fsf.org/philosophy/freesw.
html>.

 11 Richard Stallman, ‘Free Software: Freedom and Cooperation’ (Speech delivered at New York
University, New York, 29 May 2001) <http://www.gnu.org/events/rms-nyu-2001-transcript.txt>.
On the power of free software models to enhance digital diversity, see Brian Fitzgerald, ‘Intel-
lectual Property Rights in Digital Architecture (Including Software): The Question of Digital
Diversity’ (2001) 23 European Intellectual Property Review 121; Brian F Fitzgerald, ‘Software
as Discourse: The Power of Intellectual Property in Digital Architecture’ (2000) 18 Cardozo Arts
and Entertainment Law Journal 337.

— Open Source Software — Page 416 of 36 —

416 Melbourne University Law Review [Vol 29

and maintained. There are two main types of free and open source software
licences. Simpler licences, such as the revised Berkeley Software Distribution
(‘BSD’)12 and MIT/X Window System (‘MIT/X11’) licences, allow redistribu-
tion of the licensed program and its use in both source and binary forms,13 with
or without modifications, on the conditions that the copyright notice is retained
and any applicable warranties are disclaimed. There is no requirement that
derivatives of the free software must themselves be free. On the other hand,
‘copyleft’ licences (such as the GPL) attempt to create a contributory commons
by requiring that any redistribution of the software or its derivatives also occurs
under the free licence.14

B GPL and Copyleft Licences

A licensing system that promoted sharing and innovation was integral to the
development of GNU/Linux.15 Stallman realised that without a legal mechanism
to protect free software, commercial parties could incorporate free code in their
developments without any obligation to make their improved or derivative
source code available for access. To remedy this, Stallman created the GPL. The
GPL covers the initial program and ‘any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language’.16

Stallman places the GPL in a direct commercial and political context called
‘copyleft’:

To copyleft a program, we first state that it is copyrighted; then we add distri-
bution terms, which are a legal instrument that gives everyone the rights to use,
modify, and redistribute the program’s code or any program derived from it but
only if the distribution terms are unchanged. Thus, the code and the freedoms
become legally inseparable.17

 12 The original BSD licence had what came to be known as an ‘obnoxious advertising clause’,

which required attribution to be displayed on all advertising materials. This caused a problem
when there were many contributors to a project, because the attribution material quickly became
large and unwieldy. Current versions of the licence do not include this clause, but there are still
many examples of software products released under the original licence or modified versions
thereof: FSF, The BSD License Problem (2005) The GNU Project <http://www.gnu.org/
philosophy/bsd.html>.

 13 As noted above, a ‘binary’ is a program which has been compiled (automatically transposed)
from human-readable source code into a machine-executable binary format. Usage in binary
form normally entails running the program, while use of the source code will typically involve
viewing, modifying or compiling it: see generally Wikipedia contributors, Executable (27 June
2005) Wikipedia: The Free Encyclopedia <http://en.wikipedia.org/wiki/Executable>.

 14 See Lawrence Rosen, Open Source Licensing: Software Freedom and Intellectual Property Law
(2004) 105.

 15 For a detailed overview of the history of GNU/Linux, see Glyn Moody, Rebel Code: Linux and
the Open Source Revolution (2001). See also Lawrence Lessig, The Future of Ideas: The Fate of
the Commons in a Connected World (2001) 50–5; Sam Williams, Free as in Freedom: Richard
Stallman’s Crusade for Free Software (2002) ch 11.

 16 FSF, The GNU General Public License: Version 2.0, above n 5. For a detailed discussion of the
notion of ‘derivative works’ and the GPL, see Fitzgerald and Bassett, Legal Issues relating to
Free and Open Source Software, above n 2, 29–32.

 17 FSF, What is Copyleft? (5 May 2005) The GNU Project <http://www.gnu.org/copyleft/
copyleft.html> (emphasis in original).

— Open Source Software — Page 417 of 36 —

2005] Free and Open Source Software in Government 417

It is a rudimentary yet powerful licence. By releasing code under the GPL, the
licensor creates an obligation to make accessible the source code of any software
deriving from the licensed source code. Consequently, a commercial developer
who takes free code under a GPL licence and incorporates it into the code of
their product is (upon distribution) obliged to make the source code of the entire
product available to its recipients. As Stallman explains, the GPL ‘has the
strength to say no to people who would be parasites on our community.’18 It has
this strength because Stallman and the FSF foresaw that they could exploit their
copyright in software to control the way the software code was treated once it
left their hands.19

Copyleft software licences (sometimes called ‘restrictive free licences’) retain
software freedom for downstream users by preventing proprietary ‘code fork-
ing’. Code forking occurs when a version of the code is taken by a particular
person or group of people in order to continue development of the software in a
different direction from the original code — one code base branches out into
several projects. Code forking is instrumental in preventing any single organisa-
tion from dictating the way in which software must develop. Problems arise
when an entity takes free software and closes the code, creating a new proprie-
tary product, which may be developed and commercialised without returning its
improvements. The GPL prevents this by requiring a licensee, upon distribution
of a derivative work, to release the source code of any changes or modifications
to the community under the same terms as the licensor.

Non-restrictive free software licences, on the other hand, do not include a
similar restriction and will allow proprietary derivative code to be created and
distributed. For example, the original Apache20 licence allowed a derivative
work to be released with or without modifications in source or binary form. The
licensee could make changes without a requirement to share them, provided the
name of the derivative work was changed. The revised BSD licence does not
oblige modifiers of licensed software to disclose the source code to their
modifications when distributing a derivative work.

The GNU Lesser General Public License (‘LGPL’) provides what is known as
a ‘weak copyleft’. It does this by requiring any changes to the software itself to
be licensed under the same terms, but — unlike the GPL — allows linking of the
software to non-free programs. The LGPL is useful for free software libraries
that, for compatibility reasons, would benefit from incorporation into non-free
software. We discuss the issue of linking in greater detail below. The differences
between copyleft and non-copyleft free software licences are highlighted in the
following table, which provides examples of key clauses.21

 18 Stallman, ‘Free Software: Freedom and Cooperation’, above n 11.
 19 Anne Fitzgerald and Brian Fitzgerald, Intellectual Property in Principle (2004) 414–20.
 20 The Apache HTTP Server Project is an open source web server application. It is now more

widely adopted than Microsoft’s Internet Information Services platform and is used to display
more than 68 per cent of webpages: Apache Foundation, Welcome Apache HTTP Server Project
<http://httpd.apache.org>.

 21 See generally Joe Barr, Live and Let Licence (23 May 2001) ITworld.com <http://www.
itworld.com/AppDev/350/LWD010523vcontrol4>; Larry Rosen, Which Open Source Licence

— Open Source Software — Page 418 of 36 —

418 Melbourne University Law Review [Vol 29

Table 1: Examples of Free Software Licences22

 GPL LGPL Revised
BSD

MIT/
X11

Allows copying and distribution of
verbatim copies

Allows charging of fees for copies

Allows charging of fees for warranty
protection

Allows publication in binary form
without accompanying source code

Allows distribution of modified versions
of the software under the same licence

 23

Allows distribution of the software or
derivatives under other licences

 24

Allows linking with software released
under other licences

Requires changes to the software to be
documented

Requires republication of the original
copyright notice

Requires publication of a disclaimer of
warranty for redistributions

Prohibits use of upstream authors’ names
to promote or endorse derivatives

All of these licences are free software licences. The GPL and LGPL are
copyleft licences, and attempt to ensure that any changes to the software are
released to the public. The BSD- and MIT/X11-style licences are simpler and
allow downstream developers to use the code in nearly any way they see fit.
Which licence a developer chooses is often dependent on his or her goals. The
GPL helps foster and protect a free software community and codebase, while
BSD-style licences are more useful for authors coding for the benefit of all
potential downstream uses, whether in free software or not. Finally, the LGPL is

Should I Use for My Software? (2001) Rosenlaw and Einschlag Technology Law Offices
<http://www.rosenlaw.com/html/GL5.pdf>.

 22 FSF, The GNU General Public License: Version 2.0, above n 5.
 23 The LGPL only allows modified versions to be incorporated into other LGPL-licensed libraries,

not other programs.
 24 Any software released under the LGPL may be relicensed under the GPL. This is useful when

incorporating LGPL code into software that is not a library.

— Open Source Software — Page 419 of 36 —

2005] Free and Open Source Software in Government 419

useful for promoting the adoption of open standards, by allowing integration of
common library implementations into all software, but still requiring changes to
the library to be openly licensed.

A further aspect that warrants clarification is terminology; namely, what is the
difference between free software25 and open source software?

C The Open Source Initiative

The Open Source Initiative (‘OSI’) is a non-profit organisation. Its leading
proponent, Eric Raymond, has conceptualised business models enabling com-
mercial exploitation of open source programs.26 Programs distributed with the
Open Source Certified trademark27 are published on an approved list of li-
cences28 that conform to the open source definition.29 The main elements of such
licences are:

• free redistribution so that a party may not require a fee or royalty for the
downstream distribution of the program;

• the program must include source code and allow distribution in source as
well as compiled form. If a program is not distributed with its source code,
there must be a well-publicised means of obtaining the source code for no
more than a reasonable reproduction cost — preferably by downloading from
the internet without charge;

• derived works and modifications must be allowed and be capable of distribu-
tion under the same terms as the original licence;

• the licence may preserve the integrity of the original author’s code by
requiring that any redistributions include the source code in its unmodified
format along with separate patches (modification chunks) to incorporate
subsequent alterations. In this way, ‘unofficial’ changes can be made avail-
able but readily distinguished from the base source code;

• the licence must not discriminate against any person, group of persons, fields
of endeavour, technology or software package;

• the right to use the program must not be contingent upon entry to some other
form of licence or agreement such as a non-disclosure agreement;

• the right to use the program must not be contingent upon the program being
part of a particular software distribution; and

 25 Free software should be distinguished from the term ‘freeware’, which means free in price to

download: Trumpet Software Pty Ltd v OzEmail Pty Ltd (1996) 34 IPR 481, 485 (Heerey J).
‘Freeware’ has nothing to do with the notion of making source code available for access and
should not be used to describe the free software model.

 26 These business models include: loss leader; widget frosting; give away recipe/open restaurant;
accessorising; free the future, sell the present; free the software, sell the brand; and free the
software, sell the content: Eric S Raymond, The Cathedral and the Bazaar (2005) Eric S Ray-
mond’s Home Page <http://www.catb.org/~esr/writings/cathedral-bazaar>; Shawn W Potter,
‘Opening Up to Open Source’ (2000) 6 Richmond Journal of Law and the Public Interest 24;
Martin Fink, The Business and Economics of Linux and Open Source (2002).

 27 OSI, OSI Certification Mark and Program (2005) <http://www.opensource.org/docs/certification
_mark.html>.

 28 OSI, The Approved Licenses (2005) <http://www.opensource.org/licenses/index.html>.
 29 OSI, The Open Source Definition: Version 1.9 (1997) <http://www.opensource.org/docs/

definition.html>.

— Open Source Software — Page 420 of 36 —

420 Melbourne University Law Review [Vol 29

• the licence must not place restrictions on other software that is distributed
along with the licensed software. For example, the licence must not insist that
all other programs distributed on the same medium must be open source soft-
ware.30

D Tension between ‘Open Source’ and ‘Free’ Software

The difference between free software and open source software is mainly a
philosophical one. Because the definition of ‘open source’ is somewhat broader
than that of ‘free’ software, it is clear that all free software is open source, but not
all open source software is free. In practice, however, most licences that satisfy
the OSI definition will also be considered ‘free’.31

The OSI was initially formed by a small group of computer scientists, includ-
ing Bruce Perens and Eric Raymond, in order to promote the commercial uptake
of free software and respond to concerns that the term ‘free’ would discourage
commercial adoption. While the definition of ‘open source’ was drawn from
accepted free software guidelines,32 the emphasis of the OSI was not on freedom
but on the benefits of using an open source methodology for software develop-
ment. After a short period, Bruce Perens resigned from the board of OSI,
regretting that ‘Open Source has de-emphasized the importance of the freedoms
involved in Free Software.’33

The FSF has noted that the changed focus of open source software encourages
commercial developers to

gain the favourable cachet of ‘open source’ for their proprietary software prod-
ucts — even though those are not ‘open source software’ — because they have

 30 Ibid.
 31 For an example of an OSI-approved licence that is not considered ‘free’ by the FSF, see

Technical Pursuit Inc, Reciprocal Public License: Version 1.1 (2002) Open Source
<http://www.opensource.org/licenses/rpl.php>. The FSF considers that this licence is non-free
because ‘1. It puts limits on prices charged for an initial copy. 2. It requires notification of the
original developer for publication of a modified version. 3. It requires publication of any modi-
fied version that an organization uses, even privately’: FSF, Various Licences and Comments
about Them, The GNU Project <http://www.gnu.org/licenses/license-list.html#NonFreeSoftware
License>. There are also licences that are considered free by the FSF and the OSI but not by
some prominent free software groups (like Debian). See, eg, The Mozilla Foundation, Mozilla
Public Licence Version 1.1 (8 November 2004) Mozilla <http://www.mozilla.org/MPL/MPL-
1.1.html>, which Debian does not understand to be clearly free and therefore does not distribute
in its main GNU/Linux distribution: Branden Robinson, Re: Bug#251983: libcwd: QPL License
Is Non-Free; Package Should Not Be in Main (8 June 2004) Debian-Legal Mailing List
<http://lists.debian.org/debianlegal/2004/06/msg00131.html>; Barak Pearlmutter, OCAML QPL
Issue (8 March 2003) Debian-Legal Mailing List <http://lists.debian.org/debian-
legal/2003/03/msg00459.html>; Martin Krafft, Moving libcwd to Debian Non-Free (2 October
2004) Debian-Legal Mailing List <http://lists.debian.org/debian-legal/2004/10/msg00009.html>.

 32 The initial OSI definition of ‘open source’ was identical to that adopted by the following
guidelines: The Debian Project, Debian Social Contract (26 April 2004) Debian
<http://www.debian.org/social_contract.html#guidelines>. See OSI, History of the OSI (2005)
<http://www.opensource.org/docs/history.php>.

 33 Bruce Perens, It’s Time to Talk about Free Software Again (17 February 1999) Debian-Devel
Mailing List <http://lists.debian.org/debian-devel/1999/02/msg01641.html>.

— Open Source Software — Page 421 of 36 —

2005] Free and Open Source Software in Government 421

some relationship to free software or because the same company also maintains
some free software.34

By doing this, developers reap the benefits of the open source development
methodology without returning their own improvements to the users of free
software.

In an effort to be all-encompassing when discussing this area of activity, while
still respecting the nuances of these ideological differences, it has become
fashionable to use the term ‘free and open source software’ (‘FOSS’).

Why, then, have governments become interested in this grassroots and ideo-
logically-charged model of software development and distribution?

III BENEFITS OF FOSS FOR GOVERNMENTS

In recent years, governments throughout the world have come to recognise the
benefits of FOSS.35 A study by The MITRE Corporation on behalf of the United
States Department of Defence was cautiously optimistic, concluding that the
open source model

encourages significant software development and code reuse, can provide im-
portant economic benefits, and has the potential for especially large direct and
indirect cost savings for military systems that require large deployments of
costly software products.36

Taiwan has an open source project supported by the National Science Council
and Ministry of Education, which examines the use of open source products to
reduce royalty payments for office software in government agencies and
schools.37

Due to the high regard for privacy in Europe, the German government is
supporting an open source personal encryption utility, GNUPG, to reduce reliance
on proprietary privacy-enhancing code such as PGP.38 The Linux community has
also entered a cooperative project with the Software Research Institute of the
Chinese Academy of Sciences and NewMargin Venture Capital, a venture arm of
the Chinese government, called Red Flag.39 Initially, it developed a localised
operating system for servers, but now incorporates developments for PCs, PDAs

 34 FSF, Why ‘Free Software’ is Better than ‘Open Source’ (5 May 2005) The GNU Project

<http://www.gnu.org/philosophy/free-software-for-freedom.html>.
 35 See generally Robert W Hahn (ed), Government Policy toward Open Source Software (2002)

<http://www.aei-brookings.org/publications/abstract.php?pid=296>. For an excellent overview
of government policy and legislative activity regarding FOSS, see Centre for Strategic and
International Studies, Government Open Source Policies (2004) <http://www.csis.org/tech/Open
Source/0408_ospolicies.pdf>.

 36 Carolyn Kenwood, A Business Case Study of Open Source Software (2001) xxv
<http://www.mitre.org/work/tech_papers/tech_papers_01/kenwood_software/kenwood_software
.pdf>; see also The MITRE Corporation, Use of Free and Open-Source Software (FOSS) in the
US Department of Defence (2003) <http://www.egovos.org/rawmedia_repository/588347ad_
c97c_48b9_a63d_821cb0e8422d?/document.pdf>.

 37 Tiffany Kary, Taiwan Opens Door to Open Source (4 June 2002) ZDNet News
<http://news.zdnet.com/2100-3513_22-931885.html>.

 38 FSF, The GNU Privacy Guard (1 March 2004) GNUPG <http://www.gnupg.org>.
 39 Red Flag Software, About Us, Red Flag Linux <http://www.redflag-linux.com/egyhq.html>.

— Open Source Software — Page 422 of 36 —

422 Melbourne University Law Review [Vol 29

and China’s computerised lottery system.40 The Peruvian Parliament has a Bill
before it to mandate the use of open source products in government offices.41
David Nuñez, a Peruvian Congressman, circulated a letter to Microsoft on the
internet that sparked much debate on the relative merits of free and open code as
opposed to proprietary development.42 There are many more examples of
governments moving towards open source solutions, including South Africa,
Brazil, Spain, Finland and India.43

The Gartner Report identifies five key factors that have influenced and height-
ened public interest in FOSS:

1 public sector organisations must reconcile budget reductions with annual
software price increases of up to 30 per cent. Alternative licensing arrange-
ments reduce up-front costs, making open source software an attractive op-
tion;

2 supporters of open source software have been increasingly vocal amidst a
more technologically-literate community, while proprietary licensing
schemes have received negative publicity;

3 antitrust litigation against Microsoft and other large software vendors has
engendered negative sentiments toward what is perceived as a monopoly over
United States-based commercial software;

4 the World Trade Organization has introduced penalties for member countries
that fail to prosecute piracy. Governments unable to enforce software copy-
right internally due to cultural factors may use open source software as a
compliance strategy; and

5 finally, the range of open source software solutions has expanded dramati-
cally, and now encompasses a growing selection of tools with substantial
organisational support.44

More broadly, the four key factors most commonly cited as motivating the
adoption of FOSS in government are cost, open standards, security, and benefit
to the community.

 40 Ibid.
 41 Software Libre en la Administración Pública (Proyecto de Ley N° 1609) 2002 (Peru).
 42 Thomas Greene, MS in Peruvian Open-Source Nightmare (19 May 2002) The Register

<http://www.theregister.co.uk/2002/05/19/ms_in_peruvian_opensource_nightmare>. See also
Dee-Ann LeBlanc and Stacey Tipton, Ending Microsoft FUD: An Interview with Peruvian
Congressman Villanueva (21 May 2002) Linux Today <http://linuxtoday.com/news_story.php3?
ltsn=2002-05-20-006-26-IN-LF-PB>.

 43 See Kenneth Wong, Free/Open Source Software and Governments: A Survey of FOSS Initiatives
in Governments (2003) International Open Source Network <http://opensource.mimos.my/
fosscon2003cd/paper/full_paper/kenneth_wong.pdf>; Open Software Working Group (South
Africa), Free/Libre and Open Source Software and Open Standards in South Africa (2004)
National Advisory Council on Innovation <http://www.naci.org.za/pdfs/floss_v2_6_9.pdf>;
Government Information Technology Officers’ Council, Using Open Source Software in the
South African Government: A Proposed Strategy (2003) Open Source Software in Government
<http://www.oss.gov.za/docs/OSS_Strategy_v3.pdf>.

 44 Gartner Group, above n 7, 12. The Report’s major recommendation was that the Australian
Taxation Office should develop a policy on free and open source software: at 7.

— Open Source Software — Page 423 of 36 —

2005] Free and Open Source Software in Government 423

A Cost

The first benefit associated with FOSS is that it may reduce the total cost of
software ownership. Free software does not, for example, require a product key
for every computer, user or site. Thus, as Eben Moglen points out, the provider
of a ‘fully redistributable system containing only free software … can reduce the
unit cost of software to zero’,45 leaving the customer to pay only for installation
and support.46

The development model of FOSS is also more efficient than that of proprietary
software. A free software developer can reuse code that was written for any other
project, by any other developer, rather than having to start from scratch each
time a particular solution is required.

A key benefit of using and contributing to FOSS is that in many cases the
required infrastructure already exists. Taking an existing project and having
publicly-funded programmers make required changes carries no expense other
than the developers’ wages; the distribution channels, project management
software and developer base are already in place.47 When creating new projects,
such tools need to be established, but their practical ubiquity and standard
interfaces make deployment simple and keep training costs low.

In either case, interested developers from around the world can have the op-
portunity to aid the government in developing software that will benefit all
involved, at no cost to the government. However, cost should not be the only
factor governments use to evaluate software solutions. The emphasis of the free
software movement is on freedom, not price.

 45 Eben Moglen, Free Software Matters: Free Government, II (30 October 2002) <http://emoglen.

law.columbia.edu/publications/lu-24.html>.
 46 There is considerable debate as to whether the total cost of ownership (‘TCO’) of GNU/Linux

systems is less than that of Microsoft systems, particularly due to training and ongoing support
costs; but see Robert Frances Group, Total Cost of Ownership for Linux in the Enterprise (2002)
<http://www-1.ibm.com/linux/RFG-LinuxTCO-vFINAL-Jul2002.pdf>, which found that TCO
for Microsoft web servers is 2.3 times greater than GNU/Linux servers over a three year period.
See also CyberSource Pty Ltd, Linux vs Windows: Total Cost of Ownership Comparison
(4 January 2004) <http://members.iinet.net.au/~cybersrc/about/linux_vs_windows_tco_compa
rison.pdf>, which found that there was a 36 per cent saving over three years for organisations
migrating existing hardware to GNU/Linux, and a 26 per cent saving where new hardware is
purchased. Contra Julia Giera and Adam Brown, Forrester Research, The Costs and Risks of
Open Source: Debunking the Myths (2004) <http://download.microsoft.com/download/7/d/0/7d0
59de9-1557-415c-8332-920db6f89e44/FRSTRossCosts0404.pdf>, which demonstrated Linux
planning costs to be between 5 and 20 per cent higher, and training costs 15 per cent higher, than
the Microsoft equivalents; Laura DiDio, The Yankee Group, Linux, UNIX and Windows TCO
Comparison, Part 1 (2004) 1 <http://download.microsoft.com/download/6/b/7/6b7c5fa1-fcc9-43
4e-b1e6-5025b7f97786/YankeePart1.pdf>, which claims that for large enterprises, ‘a significant
Linux deployment or total switch from Windows to Linux would be three to four times more
expensive and take three times as long to deploy as an upgrade from one version of Windows to
newer Windows releases’. Expected costs of a technological rollout will be particular to any
given organisation, and must be carefully evaluated in each case.

 47 Free project management software includes version tracking tools like Concurrent Versions
System and bug tracking software like Mozilla’s Bugzilla. See FSF, CVS — Open Source Version
Control The GNU Project <http://www.nongnu.org/cvs>; The Mozilla Organisation, Home —
Bugzilla Bugzilla.org <http://www.bugzilla.org>.

— Open Source Software — Page 424 of 36 —

424 Melbourne University Law Review [Vol 29

B Open Standards

Many advocates argue that open standards are crucial in any government
acquisition of software.48 Open standards are file formats and communication
protocols which are agreed upon by community consensus and not controlled by
proprietary companies. The adoption of open standards guarantees future access
to current data, even if the hardware and systems used to create that data become
obsolete. It also entails that governments neither mandate the use of a particular
vendor’s systems (by communicating through a proprietary format) nor lock
future generations into using the same proprietary systems. The standard is
always published, so users are free to comment, criticise, and modify it while
knowing precisely what information is being stored.

While open standards do not equate exactly to open source, open source soft-
ware is more likely to use open standards because of the public consultation
inherent in the development process.49 Pursuant to the Australian government’s
support for increased interoperability between software standards, the govern-
ment aims to adopt open standards so as to ‘ensure that Australian Government
ICT systems interoperate in a trusted way with partners from industry and other
governments’.50 Integral to such interoperability is the use of software with
publicly-accessible source code and documentation.

C Security

Another benefit of free software relates to the positive effect that source code
availability has on software security. Bruce Shneier argues that security is better
served by full disclosure of vulnerabilities and fast release of
patches51 — characteristics shared by open source software. In proprietary
software, vulnerabilities are harder to identify because there is no public access
to the source code. Further, once a vulnerability is discovered, only the licensor
has the power to patch the hole; users must wait for an official update. Con-

 48 See, eg, Sebastian Rahtz, Developing an Open Source Policy (2005) The University of

Manchester: Manchester Computing <http://www.mc.manchester.ac.uk/eunis2005/medialibrary/
papers/paper_134.pdf>.

 49 Christoph Engemann points out that if, as Lawrence Lessig argues, code is law and the
technological choices we make have a binding effect on our behaviour, then that code should be
readable and accessible, as law should be. The accessibility of law is one of the basic founda-
tions of its legitimacy: see Christoph Engemann, ‘Electronic Government und die Free Software
Bewegung: Der Hacker als Avantgarde Citoyen’ in Daniel Gethmann and Markus Stauff (eds),
Politiken der Medien: Medien als Kriegs- und Regierungstechnologien (2004); Lawrence Les-
sig, Code and Other Laws of Cyberspace (2000) <http://www.code-is-law.org>.

 50 AGIMO, Open Source Software (2004) <http://www.agimo.gov.au/__data/assets/pdf_file/
35495/Open_Source_Software_Statement.pdf> (‘AGIMO OSS Position Paper’). For a further
explanation of the interplay between interoperability and open standards, see also at 2:

The Australian Government is among the leaders internationally in the field of interoperability
based on the use of open standards, an area connected with open source software. The Austra-
lian Government already has in place the ‘Government Interoperability Technical Frame-
work’, developed in consultation with an expert group of information technology architects
drawn from key agencies. The Framework specifies technical standards that will enable Aus-
tralian Government ICT systems to communicate and exchange information regardless of the
type of technology used.

 51 Bruce Schneier, Full Disclosure (15 November 2001) Crypto-Gram Newsletter <http://www.
schneier.com/crypto-gram-0111.html>.

— Open Source Software — Page 425 of 36 —

2005] Free and Open Source Software in Government 425

versely, free software benefits by having greater public scrutiny of the source
code, faster release times, and, if necessary, the problem can even be fixed by its
users.

A recent study of the use of FOSS in the United States Department of Defense
identified that free software was vital to information security in three ways:

1 the free software community has ‘produced infrastructure software … with
low rates of software failure combined with early and rapid closure of secu-
rity holes, which makes such systems useful as the security linchpins in
broader security strategies’;52

2 the communities have had a ‘long-term fascination with developing more and
more sophisticated applications for identifying and analyzing security holes
in networks and computers, resulting in [free and open source] products …
that are invaluable to in-depth analyses of security risks’;53 and

3 free software ‘contributes to security by making it possible to change and fix
security holes quickly in the face of new modes of cyberattack. This ability,
which allows rapid response to new or innovative forms of cyberattack, is
intrinsic to the FOSS approach and generally impractical in closed source
products’.54

William Caelli argues that since software cannot be trusted to be secure,
users — and particularly governments — must be able to examine the workings
of software systems to be satisfied of their security and be able to implement
tougher security measures where the system is found to be vulnerable.55 Caelli
further argues that ‘open source licensing represents the ideal for the evaluation
of the underlying security architecture in the operating system and the allied
mechanisms that activate and support necessary hardware security features’,56
and that ‘[r]easonable prudence would thus suggest movement towards an open
source solution.’57

D Providing Information Resources to the Community

Finally, free software provides a framework whereby the benefits of pub-
licly-funded software development can be returned to the public. When a
government develops publicly-funded software, there is a strong argument that,
subject to issues of security and confidentiality, the software should be made
available to the public. While not all internally-developed software may be

 52 The MITRE Corporation, above n 36, 20.
 53 Ibid.
 54 Ibid. See also a memorandum by John Stenbit, The Centre of Open Source and Government,

Open Source Software (OSS) in the Department of Defense (DOD) (28 May 2003)
<http://www.egovos.org/rawmedia_repository/822a91d2_fc51_4e6e_8120_1c2d4d88fa06?docu
ment.pdf>.

 55 William J Caelli, ‘Security with Free and Open Source Software’ in Brian Fitzgerald and
Graham Bassett (eds), Legal Issues relating to Free and Open Source Software (2004) 89, 112.

 56 Ibid.
 57 Ibid 113.

— Open Source Software — Page 426 of 36 —

426 Melbourne University Law Review [Vol 29

suitable for public release, use of free software may provide a framework to
release code to the commons without attracting liability or requiring further
expenditure to support the software.

In this regard, Russell Pavlicek questions the windfall that private organisa-
tions reap from closed-code arrangements with governments:

Which is more deplorable: that a few profit-making software companies won't
be able to make as much profit from publicly funded software, or that the pub-
lic who already paid for the software once with their tax dollars will have to
pay for it again when the large software company puts it into their
closed-source product?58

Where the line will be drawn between the use of GPL and proprietary software
in government requires an assessment of the government’s role in society. Some
argue:

The principal role of government and universities in the ecosystem is to under-
take basic research and to dispense the findings both into the societal base of
technical knowledge and to private enterprises and individuals capable of de-
veloping these innovations commercially.59

On the other hand, it could be said that the role of government is to maintain the
public good. By exercising their discretion in acquiring or creating software
solutions, governments can pass on benefits to the public. This has the effect of
cheaply increasing access to technology and the intellectual commons.

There is evidence that the Australian government may be rethinking the strong
controls it presently retains over copyright under Australian law,60 as the
Copyright Law Review Committee has been given a reference to inquire into the
legitimacy of, and the continuing role for, Crown copyright.61 It has been
suggested that a sensible outcome would be for the Crown to retain copyright in
material it develops, but take advantage of open licensing schemes where
appropriate.62 This would maximise both economic advantage and public access
to information.

Lawrence Lessig argues that governments are so entranced by the minimalist
role they supposedly ought to play in a free market economy that they have

 58 Russell C Pavlicek, Don’t Fear the GPL (23 August 2002) InfoWorld <http://www.info

world.com/article/02/08/23/020826opsource_1.html>.
 59 Microsoft Corporation, What Is Microsoft’s Concern with the GNU General Public License

(GPL)? (1 March 2005) Microsoft Shared Source Initiative <http://www.microsoft.com/
resources/sharedsource/initiative/faq.mspx>.

 60 The Commonwealth and states of Australia are owners of copyright in original works made by,
or under the direction and control of, the Commonwealth or the state: Copyright Act 1968 (Cth)
s 176. The Crown also retains copyright in material first published in Australia under its direc-
tion, and is bound by the express words of the copyright statute: ss 7, 177. However, provisions
relating to Crown ownership may be modified by agreement: s 179.

 61 Copyright Law Review Committee, Terms of Reference — Crown Copyright (5 December 2003)
<http://www.clrc.gov.au/agd/www/Clrhome.nsf/Page/RWP3C2E5B1D1B98D6FACA256DE300
0E9471>.

 62 See Brian Fitzgerald, Submission to the Copyright Law Review Committee on Crown Copyright
(2004) Copyright Law Review Committee <http://www.clrc.gov.au/www/clrHome.nsf/Page/
Present_Inquiries_Crown_copyright_Submissions_2004_Sub_No_17_-_Professor_Brian_Fitzge
rald>.

— Open Source Software — Page 427 of 36 —

2005] Free and Open Source Software in Government 427

become blind to the benefits of government intervention. He calls on govern-
ments to take a more active role:

When government steps aside, it is not as though nothing takes its place. When
governments disappear, it is not as if paradise prevails. It is not as if private in-
terests have no interests, as if private interests do not have ends that they will
pursue. To push the anti-government button is not to teleport us to Eden. When
the interests of governments are gone, other interests take their place. Do we
know what those interests are? And are we so certain they are better?63

Rod Dixon suggests that policy makers need to understand the way in which
‘open source software development poses alternative explanations of human
motivation for creative endeavors, which can be ignored or used to augment our
public policy choices.’64 Once the manner in which software flows through a
socio-technical network is understood, policy makers should consider whether
the traditional model for the deployment of software in government and associ-
ated intellectual property management is the best model to promote government
policy in the 21st century.65

This is not to suggest that closed development or acquisition of ‘off-the-shelf’
software has no place in government. In each case, there should be an honest
evaluation of which path will yield the best results. It is suggested, however, that
where public funds are used to develop software, that software should ordinarily
be returned to the public. There must be strong reasons to justify a decision not
to release source code, such as confidentiality concerns or the presence of a large
economic market for the closed product which should be exploited.

IV GOVERNMENT PROCUREMENT AND SUPPLY OF FREE SOFTWARE

Having determined that there are benefits in employing FOSS, how does
government go about procuring it? There has been much debate over the past
few years suggesting that standard government procurement practices are biased
against FOSS, and that a level playing field needs to be established.66 To
overcome any suggested limitations in the procurement process, governments

 63 Lawrence Lessig, ‘Keynote Address: Commons and Code’ (1999) 9 Fordham Intellectual

Property, Media and Entertainment Law Journal 405, 418.
 64 Rod Dixon, Open Source Software Law (2004) 122.
 65 Ibid. Recently there has emerged an even stronger argument, free software as democratic

principle, which suggests that core software infrastructure in a society — especially that relating
to government, politics, law and/or criminal justice, including voting machine or electronic court
software — should be open code. This argument is based on the assumption that software, like
discourse, may contain bias and implement discrimination, and that to guard against this we
need to be able to see what the software is doing. It has been argued that only open source soft-
ware can guarantee the scrutiny and accountability of ‘software as discourse’ that a democracy
requires: see generally Engemann, above n 49; Fitzgerald, ‘Software as Discourse’, above n 11;
Brett M Frischmann, ‘An Economic Theory of Infrastructure and Commons Management’
(2005) 89 Minnesota Law Review 917.

 66 See, eg, Kate Lundy, ‘Open Source Software: Providing Greater Security and Innovation in the
Delivery of E-Government Services’ (Speech delivered at the Open Source Software Confer-
ence, Sydney, 11 September 2003) <http://www.katelundy.com.au/opensourceegovt.htm>;
David A Wheeler, Why Open Source Software/Free Software (OSS/FS, FLOSS, or FOSS)? Look
at the Numbers! (9 May 2005) David A Wheeler’s Personal Homepage <http://www.dwheeler.
com/oss_fs_why.html#governments>.

— Open Source Software — Page 428 of 36 —

428 Melbourne University Law Review [Vol 29

throughout the world have responded by reassessing their procurement practices.
Some have chosen to ensure the effectiveness and equity of their procurement
processes by restating administrative guidelines,67 while others have used
legislation to place open source software on an equal footing.68

In Australia, the Commonwealth government has acknowledged the opportuni-
ties for innovation and other benefits that FOSS might provide.69 While the
Commonwealth government has no intention of enacting a legislative require-
ment that its agencies specifically consider open source software in procurement
processes, it has taken steps to ensure that its administrative procedures equitably
facilitate the procurement of all types of software.70 As Senator Helen Coonan,
Minister for Communications, Information Technology and the Arts, explained
following the release of AGIMO’s Open Source Software discussion paper in
August 2004,71 the government

seeks to clear the air on the debate and provide some factual information on
[its] approach to open source software and how [it is] acting to provide a level
playing field for all suppliers of software solutions to government.

As well as [the] position paper, the Government is preparing a range of tools to
help government agencies evaluate emerging open source solutions against
more familiar proprietary software on an informed basis and appropriately as-
sessing value for money and fit for purpose.72

The message is that Australian government procurement policies ‘allow agencies
to use whatever software is available providing it meets agencies’ needs and is
cost effective as a business solution.’73

A Government Procurement Practices

By way of contrast, the Australian Democrats have lobbied for (and, in the
Australian Capital Territory, obtained) legislative support for a more level

 67 See, eg, Stenbit, above n 54.
 68 See, eg, Financial Management and Accountability (Anti-Restrictive Software Practices)

Amendment Bill 2003 (Cth); Government Procurement (Principles) Guideline Amendment Act
2003 (ACT) (‘Government Procurement Act’); State Supply (Procurement of Software) Amend-
ment Bill 2003 (SA). For a comprehensive list of bills and legislation purporting to regulate
government procurement procedures, see Grupo de Usuarios de Software Libre de Córdoba,
Legislation on the Use of Free Software in the Government (29 November 2004) References for
Official Actions regarding Free Software <http://www.aful.org/politique/perou/english/referenc
ias.html>.

 69 AGIMO, Better Services, Better Government (2002) 20 <http://www.agimo.gov.au/publications/
2002/11/bsbg>.

 70 See Financial Management and Accountability Act 1997 (Cth); Commonwealth Procurement
Guidelines (2005) <http://www.finance.gov.au/ctc/commonwealth_procurement_guide.html>.
See also AGIMO, Open Source Software, above n 50.

 71 See AGIMO, Open Source Software, above n 50.
 72 Senator Helen Coonan, ‘Government Leads the Way on Open Source Software’ (Press Release,

31 August 2004) <http://www.agimo.gov.au/media/2004/08/35491.html>.
 73 AGIMO, Open Source Software, above n 50, 1. See also Financial Management and Account-

ability Act 1997 (Cth); Commonwealth Procurement Guidelines (2005) <http://www.finance.
gov.au/ctc/commonwealth_procurement_guide.html>; AGIMO, A Guide to Open Source Soft-
ware for Australian Government Agencies, above n 8, 27–8.

— Open Source Software — Page 429 of 36 —

2005] Free and Open Source Software in Government 429

playing field.74 In late 2003, the Australian Democrats attempted to legislate
consideration of open source software for public agency procurement contracts
in various jurisdictions. An initial and unsuccessful attempt to legislate at a state
level in South Australia75 was refined and presented as a Bill to the federal
Parliament, but this was also unsuccessful.76 Only the Australian Capital
Territory passed the Bill, in December 2003. The Government Procurement Act
inserts s 6A into the Government Procurement (Principles) Guideline 2002
(ACT).77

The Act requires government entities within the Australian Capital Territory to
consider open source software and avoid ‘software that does not comply with
open standards’78 or ‘for which support or maintenance is provided only by an
entity that has the right to exercise exclusive control over its sale or distribu-
tion.’79

The Act explicitly states that software does not comply with open standards
unless

the specifications for data representations used by the software (including, for
example, file formats for data storage, transmission and network protocols) are
completely and accurately documented and available to the public for use, ap-
plication or review without restriction.80

It ties the definition of open source software to that of the OSI81 and operates
subject to a three year sunset clause.82 The Act and proposed Bills aim to address
concerns that ‘a small number of software manufacturers have a disproportionate
and restrictive hold on the supply, use and development of software.’83

The Initiative for Software Choice (‘ISC’) opposed the Australian Democrats’
legislation. In response to the earlier Bill proposed by the Australian Democrats
in the South Australian Parliament, the ISC wrote a letter to the state Premier,
Mike Rann, stating:

The ISC strongly supports the development and adoption of all kinds of soft-
ware — [open source software], hybrid and proprietary. All models have a

 74 See Simon Hayes, ‘Democrats to Make Money on Open Source Gig’, The Australian (Sydney),

23 September 2003, 28.
 75 State Supply (Procurement of Software) Amendment Bill 2003 (SA).
 76 Financial Management and Accountability (Anti-Restrictive Software Practices) Amendment

Bill 2003 (Cth). Originally introduced on 18 August 2003, the Bill was reintroduced into the
Senate on 17 November 2004, following the 2004 federal election.

 77 For a more detailed examination of the Australian Capital Territory Act and the Commonwealth
and South Australian Bills, see Ian Oi, ‘Open Source and the Public Sector: Challenges in the
Development and Implementation of Policy and Law’ (Paper presented at the Linux and Open
Source in Government: The Challenges conference, Adelaide, 12–13 January 2004)
<http://www.linux.org.au/conf/2004/eventrecord/LCA2004-cd/mini/OS_in_govt/Ian_Oi_11234
8590_IO_0104_Adelaide_Paper_171203.pdf >.

 78 Government Procurement Act s 6A(1)(b)(i).
 79 Government Procurement Act s 6A(1)(b)(ii).
 80 Government Procurement Act s 6A(3).
 81 Government Procurement Act s 6A(4).
 82 Government Procurement Act s 6A(5).
 83 Financial Management and Accountability (Anti-Restrictive Software Practices) Amendment

Bill 2003 (Cth) sch 1.

— Open Source Software — Page 430 of 36 —

430 Melbourne University Law Review [Vol 29

place in the highly competitive software market. Only in this manner, through
vibrant and open competition, does the whole of the market thrive, and con-
sumers — both public and private — reap tremendous benefits.

Standing in stark contrast to open competition are state-mandated software
preferences. These ‘preference’ policies strip merit out of the process by using
access to source code as a proxy for ICT project success …

The result would be reduced options for software acquisitions, largely eliminat-
ing proprietary offerings that might be the best solutions for the given need.
Additionally, constituents would suffer because the best solutions could never
truly be acquired, with at least one development model — proprietary soft-
ware — being restricted from agency consideration. Further, South Australia’s
primarily [proprietary] ICT industry would be harmed because of foreclosed
access to important state market opportunities.84

The ISC group is reported as saying that such government mandates would be a
barrier to free trade agreements.85 Democrat Senator Brian Greig, who proposed
the Bill, rebutted these claims, specifically referring to groups such as ISC.86
Senator Greig pointed out that many current government systems, often unwit-
tingly, mandate use of proprietary systems because software procurement
choices have not considered open source alternatives and will not work with
open formats or open source software. Greig argued:

The forces of proprietary software and their supporters have tried to portray this
bill as being protectionist in nature, one that tries to pick software favourites. It
is in fact the complete opposite. Currently, we have a system that is largely
based on proprietary formats, a system that does pick favourites. Removing this
and opening up the playing field to all, is the raison d’être for this bill.87

Senator Greig points out that when the Thai government mandated use of open
source software, it was able to acquire both hardware and software for a price
similar to that which it previously paid for Microsoft’s software licences alone.
The result was that Microsoft dramatically reduced its prices in order to stay
competitive in the government contract area. Greig claims that Microsoft would
recoup lost revenue when they provided upgrades: ‘Microsoft’s actions echo the
words of Henry Ford when he offered to give away his cars provided he could
keep the monopoly on spare parts. It is this type of monopoly that the use of
proprietary formats maintains’.88 The key was to obtain, and then be able to
control, the contract. By mandating consideration of open source alternatives, the
Thai government removed what was previously a barrier to efficient market
processes — ironically, a barrier erected by a policy of economic non-interfer-
ence.

 84 Letter from Bob Kramer, Executive Director of the Initiative for Software Choice, to the

Honourable Mike Rann, 10 June 2003 <http://softwarechoice.org/download_files/DearSouth
AustraliaRann.pdf>.

 85 Simon Hayes and James Riley, ‘Open Source Trade Clash’, The Australian (Sydney), 1 July
2003, 25.

 86 Commonwealth, Parliamentary Debates, Senate, 18 September 2003, 15 520 (Senator Brian
Greig).

 87 Ibid 15 520–1.
 88 Ibid.

— Open Source Software — Page 431 of 36 —

2005] Free and Open Source Software in Government 431

Irrespective of whether it has occurred through legislative or administrative
processes, there can be little doubt that governments are now more aware of the
intricacies associated with procuring computer software. Emerging from this
discussion is the need to effectively provide for the equal consideration of FOSS
alternatives.

B Indemnities for Title and Warranties for Performance

Regardless of whether a government agency contracts for supply or creation of
free software, it should consider whether it needs indemnities against claims of
intellectual property infringement from third parties. When contributions are
made by community-based developers to a project controlled by a government
agency, it will often be useful to require a declaration by each developer that they
have written the code themselves or acquired it on a compatible licence. This is
common practice for the large free software development groups. Jeremy
Malcolm considers it sensible for developers to assume the risk when developing
open source software because they are in the best position to ensure that the code
does not infringe the intellectual property rights of any other persons.89

Where a government agency enters into a contract for the supply of free soft-
ware from a large vendor, it would be prudent to seek both indemnities for title,
and warranties that the software will work (and continue to work) as required
and that the software will be repaired or replaced if required.90 In most cases,
indemnities, warranties and continuing support agreements provide the only
reason to enter into a supply contract with a large vendor. If they are not re-
quired, deployment and training can be undertaken in-house or through a smaller
technical organisation. Risk assessment should be undertaken before any supply
contract is entered into, whether the supply is for open or closed source software.
If these indemnities and warranties are required, it will obviously be important to
assess whether the proposed supplier has the means to fulfil its potential obliga-
tions.

C Requirements of the Australian Trade Practices Act

Many free and proprietary software licences purport to disclaim all warranties,
whether express or implied, in order to avoid the possibility of free software
developers being held liable for any fault in the program. In Australia, the Trade
Practices Act 1974 (Cth) (‘TPA’) provides certain non-excludable warranties
where a corporation is carrying on a business. The TPA applies to the Australian
government and an ‘authority of the Commonwealth’ when either is carrying on
a business, but only Commonwealth authorities can be fined or prosecuted.91
The TPA will be of significance when a government is either a con-
sumer/procurer or developer/supplier of software.

 89 See Jeremy Malcolm, ‘Could SCO v IBM Happen to You?’ (Paper presented at the Linux

Conference Australia, Adelaide, 15 January 2004) <http://www.ilaw.com.au/public/scopaper.
html>.

 90 AGIMO, A Guide to Open Source Software for Australian Government Agencies, above n 8, 29.
 91 TPA s 2A.

— Open Source Software — Page 432 of 36 —

432 Melbourne University Law Review [Vol 29

The TPA establishes several consumer protection measures. Importantly, it
prohibits misleading or deceptive conduct92 and the making of false or mislead-
ing representations,93 and implies warranties as to title and quiet enjoyment.94 It
also imports requirements that goods will be fit for the purpose supplied, of
merchantable quality, and, if supplied by reference, will correspond with the
sample.95 Finally, the Act sets conditions that services will be rendered with due
care and skill and be fit for purpose.96 These implied conditions and warranties
cannot be excluded by contract.97 Most of these provisions apply when a
corporation98 is supplying goods or services to a consumer in ‘the course of a
business’.99 Peter James notes that

[w]here software is supplied by way of gift, not sale, this requirement neverthe-
less would be satisfied if the software supply is part of a commercial dealing or
if the supply is connected (even indirectly) with advancing or protecting the
commercial interests of the supplier.100

This means that the implied conditions will generally only apply to suppliers of
free software, and not individual developers.

If a government or government agency begins to engage in a commercial or a
related supply of software to consumers, it must be aware that these provisions
impose certain minimum levels of quality upon any software it provides, as well
as regulating the manner in which that software is represented. On the other
hand, if the government developer merely contributes to an open source project
outside of a business relationship, no liability could arise.

Due to the loose wording of exclusion clauses found in free software licences,
they may not be effective in limiting liability for negligence and consequential
damages. Peter James notes that the ‘courts look at the provision as a whole and,
if the exclusion attempts to limit liability for the very purpose of the contract, it
will need to be clearly and unambiguously drafted to survive challenge’,101
which the GPL is not. For these reasons, anyone supplying software under the
GPL and similar licences may be liable for damages not only for direct losses,
but also for consequential losses — including loss of profits or data — unless
they adequately modify the relevant clauses in the GPL.102

 92 TPA s 52.
 93 TPA s 53.
 94 TPA s 69.
 95 TPA ss 70–2.
 96 TPA s 74.
 97 TPA s 67.
 98 ‘Corporation’ is defined in TPA s 2A to include the Commonwealth and authorities of the

Commonwealth where they carry on a business.
 99 Note the extended operation of these sections given by TPA ss 5–6, which provide that in some

instances the provisions will have effect even though neither of the parties is a corporation.
100 Peter C J James, ‘Open Source Software: An Australian Perspective’ in Brian Fitzgerald and

Graham Bassett (eds), Legal Issues relating to Free and Open Source Software (2003) 63, 78,
citing Fasold v Roberts (1997) 70 FCR 489.

101 Ibid 80.
102 For an attempt to overcome this problem in relation to the BSD licence, consider the proposal of

National Information and Communications Technology Australia (‘NICTA’) to ‘port’ the BSD

— Open Source Software — Page 433 of 36 —

2005] Free and Open Source Software in Government 433

V GOVERNMENT AS A DEVELOPER OF FREE SOFTWARE 103

When a decision is made to use free software for a government function,
consideration must be given to whether the software should be developed
internally, outsourced to hired contractors, or built upon existing software and
customised by another supplier. Obviously, if the software required is already
available in a form that is usable by the government, such as an office suite or
desktop environment, governments should take advantage of the pre-existing
code and have installation and training carried out by in-house staff or commer-
cial vendors. However, where a substantial portion of the software needs to be
created, it will be necessary to consider whether the department is capable of
supporting its development and maintenance. There is also considerable momen-
tum for the creation of shared government code repositories, so that one agency
can create (or commission) a piece of software that is flexible enough to be
reused by other agencies (‘white-branding’) and make it available for reuse.104

Section 176 of the Copyright Act 1968 (Cth) provides that the Commonwealth
and states are owners of copyright in original literary works made by, or under
the direction and control of, the Commonwealth or the state. Effectively, the
Crown will own the copyright in both the software it creates in-house and the
software it causes to be created by contractual developers, subject to any
agreement to the contrary.105 Whether development is outsourced or not, the
government should stipulate how the development is to take place. The majority
of development could be completed by one group of developers, and released as
free software after completion, or the core group of developers could act as a
development hub for community-based free software developers. Each method-
ology has its own advantages and disadvantages.

Where development is completed by a core in-house or outsourced group,
without the aid of other members of the free software community, the develop-
ment will be easier to manage. Schedules and costs can be more accurately
planned, features can be implemented in proportion to their importance to the
government agency, necessary sensitive information can be made available to a
select group only, and the product can be made available to the public at a stage
where it is stable and has been cleansed of any sensitive information. On the
other hand, the developers would lose access to some of the benefits of open
source development — principally, the way in which work is distributed over a

licence to the Australian legal system: NICTA, Australian Public Licence B (OZPLB) Version
1.0 (2004) <http://nicta.com.au/ozplb_diff.cfm>.

103 See above Part III(B) and consider the points made concerning the government as developer in
relation to indemnities and warranties and the operation of the TPA.

104 For example, the Australian government has released MySource Matrix, a white-branded content
management system, which is made available at no cost to government agencies and non-profit
organisations. It has been argued that this white-branding is not free software on the basis that,
first, the licence for the core system requires that notification be given for modifications and
copyright in modifications must be assigned to the developer; and, second, the extra modules
distributed by the Australian government are licensed under proprietary licences: see Eric Abetz,
‘AGIMO Open Source Solution “Whitebranded”’ (Press Release, 27 April 2005) <http://www.
agimo.gov.au/media/2005/april/42223.html>; Brendon Chase and Renai LeMay, Government
OSS Not Really Open: Lawyer (3 May 2005) ZDNet Australia <http://www.zdnet.com.au/news/
software/0,2000061733,39190311,00.htm>.

105 Copyright Act 1968 (Cth) s 179.

— Open Source Software — Page 434 of 36 —

434 Melbourne University Law Review [Vol 29

broad developer base. Distributed development can provide not only cheap
labour but potentially also a more productive and inventive team, leading to
more efficient, secure code. Additionally, if the government’s intention is not to
release code until after development has been completed, and the developing
agency is building upon GPL-licensed code, it must take care to avoid earlier
distribution of the software in order to prevent the obligation to distribute source
code from arising.106 This is particularly important when testing or evaluation
versions of the software are provided.

Alternatively, software can also be effectively developed through govern-
ment-sponsored, community-based development. According to this methodology,
the core (in-house or contracted) development group forms the nexus for
development, providing the framework, momentum and guidance to a wider
community of free software developers. However, one of the major disadvan-
tages of this approach is the extra overhead associated with managing a large
distributed community, whose aims and schedules do not always align with those
of the agency. Accordingly, this methodology is probably best applied to large
projects that are likely to be of immediate use to a large number of people, where
interested and motivated developers can provide substantial help in develop-
ment.107

Finally, government agencies might also contribute to and customise a
pre-existing free software project, making any required changes without taking
control of the development process. Under this approach the agency would not
be responsible for management of users, but would be able to build upon
pre-existing work, extend the software to meet its requirements, and give the end
product back to the community as a simple, one-off gift.

A The Obligation to Redistribute Source Code

The obligation to redistribute must be clearly understood by any user of free
software. If a government decides to use free software, it must be aware of the
circumstances in which it will be obliged to disclose its modifications to the
program source code. For restrictive free licences like the GPL, a government
will be obliged to disclose the source for any derivative works it makes and
distributes.108

Due to uncertainties in the licence (the effect of which will be examined be-
low),109 it is not clear exactly when a derivative work will be created. Modifica-
tions to the software are clearly derivative works and will be treated as such. The
difficulty lies in determining when new programs, which simply make use of
free software or are designed to operate with free software — in short, mere use
of licensed code — will be treated as derivative works. Stallman argues that any
use of code released under the GPL by another program creates an obligation

106 FSF, The GNU General Public License: Version 2.0, above n 5, cl 3(a).
107 See Jan Sandred, Managing Open Source Projects: A Wiley Tech Brief (2001) 37; Benkler,

above n 6; David McGowan, ‘Legal Implications of Open Source Software’ [2001] University of
Illinois Law Review 241; Raymond, above n 26.

108 FSF, The GNU General Public License: Version 2.0, above n 5, cls 2(b), 3(a).
109 See below Part V(B).

— Open Source Software — Page 435 of 36 —

2005] Free and Open Source Software in Government 435

upon that other program.110 However, because the GPL appears to carve out a set
of rights from copyright law, it would appear that not all forms of incorporation
are capable of giving rise to a derivative work. As Rosen argues, ‘[t]he primary
indication of whether a new program is a derivative work is whether the source
code of the original program was used, modified, translated or otherwise
changed in any way to create the new program’.111 However, he adds that ‘[t]he
meaning of derivative work will not be broadened to include software created by
linking to library programs that were designed and intended to be used as library
programs.’112 Accordingly, it is possible to create new software that uses and
relies upon free software components without creating a derivative work.

The distinction, though fine, is important. If a program is a derivative of an-
other work which is licensed under the GPL, any distribution of the new program
must also be under the GPL. On the other hand, if the new software is not a
derivative, the developer is free to release the software on any terms. For
governments, this can be very important because it may oblige the release of
sensitive or confidential information. To safely avoid disclosure, software that
may contain or process such information should be designed to operate inde-
pendently from any software licensed under terms which would compel disclo-
sure of that information. In many cases, the sensitive parts of code can be built
into separate modules, which do not form part of the main application, and
therefore are not required to be licensed under the GPL.

Simply creating a derivative work, without more, will not give rise to an
obligation to publish it under a free software licence. The derivative work must
be ‘distributed’. However, what constitutes a ‘distribution’ is not clear. It is
apparent from the FSF’s own comments that internal distribution within a single
organisation will not be considered a ‘distribution’ under the GPL.113 Similarly,
Eben Moglen, general counsel for the FSF, takes the view that ‘Federal Govern-
ment agencies may share free software without making a “distribution”.’114
Thus, in Australia, sharing of code between federal government departments
would probably not give rise to an obligation to make the source code available.
The same might also be true for sharing between state government departments,
and possibly between federal and state, or state and state governments.115

110 Richard Stallman, Why You Shouldn’t Use the Library GPL for Your Next Library (February

1999) The GNU Project <http://www.gnu.org/licenses/why-not-lgpl.html>.
111 Lawrence Rosen, ‘Derivative Works’ [2003] Linux Journal <http://www.linuxjournal.com/

article/6366>.
112 Ibid. Library programs perform generic computational functions and are commonly distributed

freely and in source code form together with a programming language or Application Program-
ming Interface for use in software development by other programmers.

113 FSF, Frequently Asked Questions about the GNU GPL (2005) The GNU Project <http://www.
gnu.org/licenses/gpl-faq.html#InternalDistribution>.

114 Email from Eben Moglen to Brian Fitzgerald, 3 December 2003.
115 For such a sharing between federal and state governments not to be deemed a distribution, we

would need to rely on the notion of Australia being ‘one indissoluble Federal Commonwealth
under the Crown’, as stated in the Preamble to the Australian Constitution. However, this argu-
ment runs counter to the accepted constitutional jurisprudence that conceptualises each emana-
tion or jurisdiction of the Crown as being a legal entity in its own right: Bropho v Western Aus-
tralia (1990) 171 CLR 1, 22 (Mason CJ, Deane, Dawson, Toohey, Gaudron and McHugh JJ).

— Open Source Software — Page 436 of 36 —

436 Melbourne University Law Review [Vol 29

However, if the software is shared with or by a statutory corporation, there will
be a stronger argument that a ‘distribution’ has taken place. Where a commercial
body exists to carry out a public function, but is otherwise independent from the
government, it is probable that any sharing of software between it and another
such entity would not be taken to have been made between two parts of the
Crown or government; rather, the presumption would arise that a distribution
between two separate entities had taken place. Accordingly, any software that
contains sensitive or confidential information, if it forms a derivative of any
restrictive free software, can be shared between government departments without
requiring disclosure of the source. Even so, care must be taken to avoid distribu-
tion to third parties, including statutory corporations.

Finally, on the subject of sensitive or confidential information, it must be made
clear that merely using free software to create or store the information will never
give rise to an obligation to disclose. The concern only arises when such
information is used to create or modify the software itself and that information
becomes embedded in the code. As such, an end user who does not modify
source code will never be under such an obligation.

B Enforceability of the GPL

There is considerable debate over the enforceability of the GPL and whether it
is to be construed as a licence or a contract.116 Specifically, if it is a contract, is
there valid consideration to create an enforceable contract? On the other hand, if
it is considered to be a copyright licence, is it possible to enforce the require-
ments that users distribute any derivative works under equivalent terms? Ben
Giles argues that since the only promise that a free software user makes is to
redistribute under the GPL if and only if they choose to distribute a derivative
work, that promise is not sufficient and there is no consideration to support a
valid contract.117 This argument rests on the doctrine of illusory consideration,
which means that promises that are only to be carried out at the promisor’s
discretion cannot create a binding contract.118 There has been no significant
interpretation or modern restatement of this doctrine in Australian law. Arguably,
due to significant changes to the way in which parties do business online, the
doctrine has lost some relevance in recent years.

In contrast, Moglen suggests that the GPL is a copyright licence, not a con-
tract: ‘[l]icenses are not contracts: the work’s user is obliged to remain within the
bounds of the license not because she voluntarily promised, but because she

116 See, eg, Thomas Hoeren, The First-Ever Ruling on the Legal Validity of the GPL — A Critique of

the Case (2004) Oxford Internet Institute <http://www.oii.ox.ac.uk/resources/feedback/OIIFB_
GPL3_20040903.pdf>; Julian P Höppner, ‘The GPL Prevails: An Analysis of the First-Ever
Court Decision on the Validity and Effectivity of the GPL’ (2004) 1 SCRIPT-ed 662
<http://www.law.ed.ac.uk/ahrb/script-ed/issue4/GPL-case.asp>.

117 Ben Giles, ‘“Consideration” and the Open Source Agreement’ (2002) 49 Computers and Law
Journal 15, 16.

118 British Empire Films Pty Ltd v Oxford Theatres Pty Ltd [1943] VLR 163, 167–8 (O’Bryan J).
See also Placer Development Ltd v Commonwealth (1969) 121 CLR 353.

— Open Source Software — Page 437 of 36 —

2005] Free and Open Source Software in Government 437

doesn’t have any right to act at all except as the license permits.’119 The exclu-
sive rights of the copyright owner can be used to restrict reproduction, making a
derivative work and distributing the software, and any user who does these
things must do so in accordance with the terms of the licence.120 Any obligations
in the GPL that purport to do more than this will need to be supported by
contractual consideration.

As yet, there has been no significant litigation concerning the enforceability
and classification of the GPL, though in 2004 the Munich District Court issued a
preliminary injunction against Sitecom Deutschland GmbH for alleged infringe-
ment of the GPL.121 Moglen suggests that ‘there have been no such controversies
because nobody thinks they’re going to win them’.122 Maureen O’Sullivan notes
that the threat of damage to a firm’s reputation from the watchful open source
community, as well as the possibility of a lengthy court case, has been successful
over the last decade in ensuring that firms comply with the terms of the GPL.123
It thus seems clear that even though the GPL has not been tested in court,
questions about its technical legal enforceability are not barriers to its wide-
spread use, because substantial compliance with its terms can be expected to
continue well into the foreseeable future.

The other concern about free software licences is that a gratuitous licence can
normally be revoked at will.124 This means that, in the case where one single
entity controls a significant portion of the copyright in the source code for a free
software package, that entity may be able to terminate the licence and users will
no longer be entitled to copy or redistribute the software. Jeremy Malcolm calls
this ‘one of the best kept secrets of the open source movement’,125 and notes the
potential danger that an upstream developer could revoke the licence. This would
cause all derived projects to be rendered invalid to the extent that they are
derived from the original.126 In practical terms, however, it would be hard for
any single licensor to revoke a licence partially supporting a program —
especially one which forms part of a large, distributed project.

119 Eben Moglen, Free Software Matters: Enforcing the GPL, I (12 August 2001) <http://moglen.

law.columbia.edu/publications/lu-12.html>. See also Sun Microsystems Inc v Microsoft Corp,
188 F 3d 1115, 1121 (Schroeder J) (9th Cir, 1999).

120 Note that although these rights emanate from the international Berne Convention for the
Protection of Literary and Artistic Works, opened for signature 14 July 1967, 828 UNTS 222
(entered into force 29 January 1970), their operation under Australian or other national law will
be slightly different in terminology and effect.

121 Harald Welte v Sitecom Deutschland GmbH (Unreported, Landgericht München I, Kaess, Müller
and Rieger JJ, 19 May 2004) <http://www.jbb.de/urteil_lg_muenchen_gpl.pdf>. An English
translation is available at <http://www.oii.ox.ac.uk/resources/feedback/OIIFB_GPL2_200409
03.pdf>. See also Harald Welte, Netfilter Project Was Granted a Preliminary Injunction against
Sitecom GmbH (15 April 2004) Netfilter Project <http://www.netfilter.org/news/2004-0
4-15-sitecom-gpl.html>.

122 Moody, above n 15, 313.
123 See Maureen O’Sullivan, ‘Making Copyright Ambidextrous: An Expose of Copyleft’ [2002] 3

Journal of Information, Law and Technology <http://www2.warwick.ac.uk/fac/soc/law/elj/jilt/
2002_3/osullivan>.

124 See Trumpet Software Pty Ltd v OzEmail Pty Ltd (1996) 34 IPR 481.
125 Jeremy Malcolm, Problems in Open Source Licensing (Paper presented at the Linux Conference

Australia, Adelaide, 24 January 2003) <http://www.ilaw.com.au/public/licencearticle.html>.
126 Ibid.

— Open Source Software — Page 438 of 36 —

438 Melbourne University Law Review [Vol 29

In the event that a licence is revoked, it is likely that the doctrine of estoppel
would prevent the copyright owner from asserting his or her rights. Equitable
estoppel has been developed to prevent a person from unconscionably denying
an expectation where they induce in another party (here the licensee) an assump-
tion that a particular legal relationship exists between them, and that party
subsequently acts, reasonably, in reliance upon that expectation.127 If a licensor
releases software under a free software licence, they are essentially inviting
others to perpetually use, reproduce, modify and distribute that software. If
another person does in fact make use of the software, and the original licensor
purports to revoke the licence (a departure clearly to that person’s detriment), the
doctrine of equitable estoppel would arguably prevent the licensor from denying
that the licence could not be revoked.128 Again, to reach this stage in legal
proceedings would be quite rare. While revocation may be technically possible,
it is unlikely to occur in the face of public opposition and a vigilant open source
community. Regardless, as has been demonstrated over the last 12 months by
The SCO Group Inc v International Business Machines Corp litigation,129 the
developer community is more than willing to replace any code for which the
licence has been revoked or that otherwise infringes copyright. For these reasons,
the issue of revocability is much more a theoretical than a practical concern.

C Layering and Combining of Licences

There are many different FOSS licences, a number of which are nearly identi-
cal to the copyleft GPL or the permissive MIT/X11 and BSD licences. Unfortu-
nately, some of the minor differences render them legally incompatible with
other licences. This is particularly the case when combining code released under
the GPL licence with code released under licences which are not considered to
be GPL-compatible. The copyleft nature of the GPL will not allow further
restrictions to be placed upon software that is derived from code released under
the GPL. It prevents code forking under different licences, which means that
downstream developers cannot take the benefits of free software and create a
closed product. Accordingly, if another licence imposes additional restrictions,
source code released under that licence cannot be combined with other source
code licensed under the GPL. Such a licence is said to be ‘GPL-incompatible’.

The problem is accentuated when a single distribution makes use of software
that is licensed under a large number of free software licences. Peter James
recognised this problem, noting the main licence groups in Red Hat Linux 7.1:130

127 Waltons Stores (Interstate) Ltd v Maher (1988) 164 CLR 387, 428 (Brennan J).
128 See generally Commonwealth v Verwayen (1990) 170 CLR 394. Further issues about the kind of

remedy to be awarded (for example, specific performance as opposed to damages), and who
could enforce the estoppel (for example, the direct recipient as opposed to downstream users),
would also need to be considered.

129 No 2:03CV294 DAK (D Utah, 1 July 2005) (‘SCO v IBM’).
130 Red Hat Linux is a popular open source distribution of the Linux operating system.

— Open Source Software — Page 439 of 36 —

2005] Free and Open Source Software in Government 439

there are more than 17 different licence types (as well as public domain soft-
ware) governing different parts of the source code. The break down on licences
is:

 55% GNU’s General Public Licence (GPL)

 10% GNU’s Lesser General Public Licence (LGPL)

 9.4% MIT open source licence (MIT)

 7.5% Berkeley Software Distribution licence (BSD)

 6.8% Mozilla Public Licence (MPL)131
There is usually no tension between free software licences where a software

package is merely bundled together (as is the case in self-contained software
such as Red Hat Linux). The problem arises where source code is combined from
several sources or individual pieces of software in a way that creates a derivative
work, or, much less often, is expressly forbidden by one or more of the software
licences. Since the GPL is the most popular of the free software licences,
releasing software under a licence that is incompatible with the GPL effectively
places it out of reach for a large part of the free software community. It negates
the benefits of code reuse and collaborative production.

Two principles are of paramount importance if governments are to success-
fully deploy free software. First, if they combine code released under the GPL
with code released under an incompatible licence, they may not distribute the
derivative work. The GPL will not apply if any incompatibly-licensed code is
contained in identifiable sections of the whole work, and these ‘can be reasona-
bly considered [as] independent and separate works in themselves’.132

Second, when governments release software under a free or open source
licence, they should do so under a licence that is compatible with the GPL.133
Failure to do so would result in the software being excluded from incorporation
into other free software projects that use a GPL licence, and prevent the project
from reutilising externally-developed code that has been released under the GPL.
Because the GPL is the single most popular free software licence, releasing
software which can not make use of, or be incorporated into, GPL-licensed code
greatly decreases the utility of free software. Importantly, however, it is not
necessary to release code under the GPL itself, so long as the licence chosen is
GPL-compatible.134

131 James, above n 100, 68, citing David A Wheeler, More than a Gigabuck: Estimating

GNU/Linux’s Size (29 July 2002) David A Wheeler’s Personal Home Page <http://www.dwhee
ler.com/sloc/redhat71-v1/redhat71sloc.html>.

132 FSF, The GNU General Public License: Version 2.0, above n 5, cl 2.
133 The FSF maintains a list of licences that it considers to be compatible with the GPL: see

Thorsten Sauter, Various Licences and Comments about Them (28 June 2005) The GNU Project
<http://www.gnu.org/licenses/license-list.html>.

134 Any licence which is no more restrictive than the GPL itself will be GPL-compatible. The
easiest solution is to choose the pre-existing popular compatible licence that best fits the gov-
ernment’s needs, such as the GPL (strong copyleft), LGPL (weak copyleft), or original MIT/X11
or revised BSD licences (non-copyleft): see David A Wheeler, Make Your Open Source Software
GPL-Compatible. Or Else (16 February 2005) David A Wheeler’s Personal Homepage
<http://www.dwheeler.com/essays/gpl-compatible.html>.

— Open Source Software — Page 440 of 36 —

440 Melbourne University Law Review [Vol 29

D Dual Licensing

In order to avoid the problems associated with incompatible licences, it is
possible, and increasingly common, to release software under two or more
licences. The first licence is generally a strong copyleft licence, like the GPL,
which prevents downstream developers from restricting any further freedom in
the source. The second licence is often a more traditional, closed source software
licence. This method effectively means that people who want to use and modify
the software for further free software applications are able to do so, but those
who wish to use the software in closed source proprietary applications must
purchase a licence from the copyright owner. This is an effective way to com-
mercialise software without sacrificing the benefits of releasing free software. Of
course, this method will only work if there is a commercial market for the
software when it is embedded or combined in other proprietary products; where
the software is going to be distributed separately, or where it is clearly separable
from proprietary software, further developers will not need to purchase the
closed licence.135

Dual licensing must occur at the top level of code distribution. Copyleft li-
cences prevent downstream developers from forking and relicensing code; only
the owner of all the copyright in software can validly create dual licences. Where
code is developed in an open manner, by many otherwise unrelated contributors,
ownership of the copyright in the software is generally not vested in any one
organisation — each contributor owns the copyright in the code they submit. To
overcome this obstacle, organisations commonly require assignment of the
copyright in each submission from the contributor to the organisation.136 That
organisation then provides guidance to the developers and decides the manner in
which the software evolves. Developers wishing to take the software in another
direction are able to take the code at any time and produce ‘unofficial’ versions
or ‘forks’ of the product, but are not able to change the licence and close the
source. In practice, both developers and users continue using the official version
in all but the most extreme cases. Organisations that have no need to use dual
licences will generally not need to claim copyright in contributed code.

VI THREATS TO THE FOSS MOVEMENT

Although the popularity of FOSS continues to grow, recent developments
suggest that governments need to be mindful that the model (like any other) is
not without opposition. This section considers the challenges posed by software
patents, which remove code from the common pool, and the SCO v IBM litiga-
tion, which recently threatened to destabilise the free software model.

135 See Mikko Välimäki, ‘Dual Licensing in Open Source Software Industry’ (2003) 8 Systemes

d’Information et Management 63 <http://www.soberit.hut.fi/~msvalima/dual_licensing.pdf>.
136 For an assignment of copyright to be effective it must be in writing and signed by or on behalf of

the assignor: Copyright Act 1968 (Cth) s 196. This is also the position in the United States: 17
USC § 204 (1978).

— Open Source Software — Page 441 of 36 —

2005] Free and Open Source Software in Government 441

A Software Patents

FOSS code, like other types of software code, may be subject to patent protec-
tion.137 Patents grant a limited term monopoly to make, sell, hire or use an
invention.138 An organisation that receives and uses software that is encumbered
by a patent will generally be liable for infringement of that patent, if it is valid.
The prospect of being sued for patent infringement provides another reason for
governments to consider outsourcing their software development; contracting
with a large vendor may allow governments to allocate the risk of subsequent
intellectual property claims. The larger concern about software patents arises
from their likely effect upon the development of free software.

Clause 7 of the GPL states that:
If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on
you (whether by court order, agreement or otherwise) that contradict the condi-
tions of this License, they do not excuse you from the conditions of this Li-
cense. If you cannot distribute so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all.139

Clause 7 prevents a person from redistributing code licensed under the GPL if it
is encumbered by patents. However, it is not until ‘conditions are imposed on
you’ that redistribution is prevented. In practice, this will mean that until patent
infringement is asserted, distribution under the GPL — or any other software
licence — is permitted. If many software patents are indeed invalid,140 then
distribution may not be significantly impaired by patent claims, as it is less likely
that such claims will be asserted. Only where a court or patentee imposes actual
restrictions upon proposed distributors will redistribution of infringing software
be prevented; patents that may cover the code but are not enforced, or patents
whose applicability or validity are suspect, will not prevent the distribution of
GPL-licensed code. However, a distributor of software does take a risk when
distributing or using code in relation to which a patent may be enforced in the
future.

Clause 7 is only applicable to GPL-licensed code. In other cases, it will not
prevent a developer from releasing patented software under a free licence where
that software does not build on GPL-licensed code. Because the majority of free
software licences are silent about patents, it is conceivable that an enterprising
developer could release software under a free licence with the intention of

137 See CCOM Pty Ltd v Jiejing Pty Ltd (1994) 51 FCR 260; International Business Machines

Corp v Commissioner of Patents (1991) 33 FCR 218.
138 Patents Act 1990 (Cth) s 13(1).
139 FSF, The GNU General Public License: Version 2.0, above n 5.
140 See generally Mark A Lemley, ‘Rational Ignorance at the Patent Office’ (2001) 95 Northwestern

University Law Review 1495. Recent empirical studies indicate that almost half of all fully-liti-
gated patents are held invalid: see John R Allison and Mark A Lemley, ‘Empirical Evidence on
the Validity of Litigated Patents’ (1998) 26 American Intellectual Property Law Association
Quarterly Journal 185, 205–6.

— Open Source Software — Page 442 of 36 —

442 Melbourne University Law Review [Vol 29

enforcing patent rights at a later date. However, because the licences are silent as
to patents, a patent licence may be implied when a developer releases software
freely.141

In Hewlett-Packard Co v Repeat-O-Type Stencil Manufacturing Corp Inc,142
the United States Court of Appeals for the Federal Circuit held that where a
vendor sells a product without restriction, there is an implied licence granted to
exploit any patent right held by the vendor to do the things for which the parties
reasonably expect the product to be used.143 There is no difficulty in extending
this principle to the supply of software. Accordingly, where a developer releases
software under a free software licence, it would appear similarly to allow the use
of related patents by anyone who receives the free software.144

Daniel Ravicher, senior counsel for the FSF, argues that the scope of the im-
plied licence is even greater under the GPL (and any other free licence that is
silent as to patent claims) because the reasonably contemplated uses of the code
explicitly include making derivative works, while other free software licences
explicitly grant patent licences only for the code as distributed by the licensor.145
For example, the Apache licence (version 2.0) grants an explicit patent licence
over patent claims held by a contributor that are ‘necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s) with the Work
to which such Contribution(s) was submitted.’146 There is no grant for similar
infringing code in the program, nor for modified or derivative works.

Finally, there is significant concern among the free software community that
software vendors will begin to enforce their large patent portfolios to eliminate
the competition posed by free software. Most of the large software developers
have been aggressively acquiring patents for much of the software they develop,
primarily in order to be able to use those patents defensively in the event of
another developer enforcing their own patents.147 Given that all of these large
software developers cross-license their patent portfolios to each other, they are
safe to continue to develop unhindered by the majority of software patents.
Small free software developers, on the other hand, have little money to either
license patents from the large developers or to apply for patents themselves. The

141 In any case, the doctrine of equitable estoppel may operate to prevent a subsequent claim of

infringement: see above Part V(B).
142 123 F 3d 1445 (Fed Cir, 1997).
143 See also Solar Thomson Engineering Co Ltd v Barton [1977] RPC 537; Bottom Line Manage-

ment Inc v Pan Man Inc, 228 F 3d 1352 (Fed Cir, 2000); Surfco Hawaii v Fin Control Systems
Pty Ltd, 264 F 3d 1062 (Fed Cir, 2001).

144 Alternatively, as a fall-back position, one could argue that the doctrine of equitable estoppel
operates to prevent a distributor of free software from enforcing patent infringement claims in
respect of that software. Note, however, that a term implied in the licence may be simpler to
enforce and rely upon than an equitable remedy.

145 Daniel Ravicher, ‘Patents and Open Source Software: Forever Foes or Actually Allies’ (Paper
presented at the Phillips Fox–Red Hat Free and Open Source Software seminars, Sydney, Mel-
bourne, Canberra and Brisbane, November 2004) 6.

146 Apache Software Foundation, Apache License: Version 2.0 (January 2004) cl 3 <http://www.apa
che.org/licenses/LICENSE-2.0>.

147 See Kenneth Nichols, ‘The Age of Software Patents’ (1999) 32 Computer 25; Matt Hicks, IBM
Leads in Patent Race (13 January 2004) eWeek.com <http://www.eweek.com/article2/0,4149,14
35083,00.asp>.

— Open Source Software — Page 443 of 36 —

2005] Free and Open Source Software in Government 443

biggest fear is that small or individual free software developers have been left
behind in a patent arms race and are open to be sued for infringement of an
ever-increasing stockpile of patents at any time.

Free software developers may, however, have several advantages when de-
fending patent infringement claims that other software developers do not. First,
as Ravicher notes, it would be very difficult to obtain a preliminary injunction to
stop the use and distribution of software that allegedly infringes patent rights.
This is because of the large number of users relying on the software and the
practical impossibility of enforcing such a broad injunction against a distributed
network.148 Accordingly, Ravicher argues, a litigant would be forced either to
seek damages, where it could choose to sue a small user or group of users who
do not have large assets, or sue a large user or developer with the assets to
defend themselves.149 In many cases where a small developer is sued, they are
likely to receive support from larger and better-resourced users of the software in
question, or from the community in general, allowing the smaller developer to
defend themselves.

The second great advantage that free software developers have is the willing-
ness of the community to overcome patent claims, either by designing around the
claims or finding prior art that invalidates them. One of the prerequisites of a
valid patent is that it is novel and involves an inventive step, as compared to the
prior art base as it existed before the date of filing.150 The size of the free
software community makes it easier for someone to provide an example of how
any given patent is similar in function to something that has been published or
used before, or how the invention claimed was obvious to anyone skilled in the
art and hence did not involve an inventive step. Some of this work is starting to
be done proactively, with free software developers maintaining a database of
prior art,151 or providing services to help challenge patents both before and after
infringement claims have been lodged.152 Where a patent’s validity is contested,
it is estimated that it will be found to be invalid in about half of all cases.153

If some free software is found to infringe a patent, the software must be modi-
fied in order to allow it to continue to be freely distributed. A valid, well-con-
structed patent is, by necessity, quite specific in its claims, and skilled developers
are usually able to design around the patent if necessary. Given the lengthy
process of litigation, it is likely that by the time any significant patent infringe-

148 Ravicher, above n 145.
149 Ibid.
150 Patents Act 1990 (Cth) ss 18(1), (1A).
151 See, eg, FSF, Prior Art Database (2002) Savannah <http://www.nongnu.org/padb>.
152 See Jason Schultz, The Patent Busting Project (2005) Electronic Frontier Foundation

<http://www.eff.org/patent>; Public Patent Foundation, The Public Patent Foundation (2005)
PUBPAT <http://www.pubpat.org>.

153 Allison and Lemley, above n 140, 205–6. There is some suggestion that the percentage of invalid
software patents is higher due to the difficulty of identifying prior art and reverse engineering
software code for examination. See generally Julie E Cohen, ‘Reverse Engineering and the Rise
of Electronic Vigilantism: Intellectual Property Implications of “Lock-Out” Programs’ (1995) 68
Southern California Law Review 1091, 1177. See also Lawrence Lessig, The Problem
with Patents (23 April 1999) The Industry Standard <http://www.lessig.org/content/standard/
0,1902,4296,00.html>.

— Open Source Software — Page 444 of 36 —

444 Melbourne University Law Review [Vol 29

ment claim is completed, some members of the free software community will
have designed a non-infringing solution. An example of this willingness to code
around can be seen in the community’s initial reaction to the SCO v IBM
litigation, where prominent members of the developer community promised to
rewrite any infringing code they were shown.154

Software patents pose a significant threat to the software industry as a whole,
particularly because the proliferation of incorrectly issued or invalid patents
unreasonably raises transaction costs for all developers. When acquiring free
software, governments should include future patent claims in their risk analysis,
and should seek indemnities from large vendors if the risk justifies the cost. In
particular, governments should consider software patents when releasing free
software, but should also remember that the risk of infringement is generally no
greater (and perhaps less) than that associated with in-house development of
proprietary software. Indeed, the patent considerations are comparable to those
affecting government research in other fields.

B The SCO v IBM Litigation

The recent and ongoing litigation between The SCO Group (Caldera Systems)
and IBM has received great attention both inside and outside the free software
community. Significant doubts have been raised as to the legitimacy of code
within GNU/Linux, as well as concerns over the potential liability of users and
developers of free software to third parties for infringement of intellectual
property and other rights. To properly understand the lawsuits, it is necessary to
briefly examine the history of UNIX and its relationship to Linux.

1 UNIX and GNU/Linux — A Brief History155
Development on UNIX officially commenced in 1969 by AT&T Bell Labs

(‘AT&T’), in conjunction with MIT; the University of California, Berkeley; and
private and public developers. Individuals at universities and large organisations
all around the world were helping to write UNIX tools and UNIX-like operating
systems. AT&T was unable to commercialise UNIX due to a 1956 consent
decree with the United States government over antitrust issues, which restricted
its business to providing common carrier communication services.156 Instead, the
product thrived by distributing development across the world. AT&T was able to
license its rights in UNIX to universities and large organisations, but only for
nominal fees.

154 See Roberto J Dohnert, The SCO Threat: A Professional Linux User’s Perspective (10 June

2003) OSNews.com <http://www.osnews.com/story.php?news_id=3752>. Admittedly, it may be
easier to rewrite code to prevent infringement of copyright than of patent rights.

155 For a more detailed history, see Éric Lévénez, UNIX History (20 July 2005) <http://www.leve
nez.com/unix>; Eric S Raymond, The Art of UNIX Programming (2003) ch 2 <http://www.
faqs.org/docs/artu>; Kelly, Handout for the UNIX Industry: A Brief History (2000) College
Resource and Instructor Support Program <http://snap.nlc.dcccd.edu/learn/drkelly/hst-hand.
htm>.

156 See United States Department of Justice, ‘Justice Department Agrees to Terminate Last
Provisions of IBM Consent Decree in Stages Ending 5 Years from Today’ (Press Release, 2 July
1996) <http://www.usdoj.gov/atr/public/press_releases/1996/0715.htm>.

— Open Source Software — Page 445 of 36 —

2005] Free and Open Source Software in Government 445

In 1983, the United States Department of Justice won a second antitrust case
against AT&T and broke up the conglomerate, leaving AT&T free to commer-
cialise its interests, which it promptly did. Most universities and commercial
distributions licensed UNIX from AT&T. Distributed development slowed
because of licence issues and development mainly continued in the large licensed
distributions, which caused a fragmentation among UNIX and UNIX-like
operating systems.

Stallman launched the GNU project in 1983, with the goal of creating a free,
UNIX-compatible operating system. The FSF, a tax-exempt charity, was created
in 1985 to financially support free software. Despite developing many free tools,
it did not complete a free operating system kernel.157 Around the same time,
Intel’s low cost computer chips came into the market and were adopted by
Microsoft. Microsoft released Windows 3.0 in 1990, and grew to dominate the
desktop computer market. The large UNIX vendors kept working on the more
elegant, more expensive microcomputers, but both the hardware and software
proved too expensive to compete with Microsoft and Intel. UNIX development
slowed once again.

In 1991, Linus Torvalds, a university student from Finland, began work on the
Linux kernel, citing the high price of commercial UNIX distributions as a
motivating factor. Linux provided the kernel that Stallman’s GNU project had
been missing, and distributed development on GNU/Linux, a free operating
system that ran on cheap Intel hardware, began in earnest.

At the same time, the corporate UNIX market began to feel the pressure lev-
elled by Microsoft and Intel, and many interests were disposed of and consoli-
dated. Importantly, AT&T sold all its rights in UNIX to Novell. In 1995, Novell
transferred some of its rights in UNIX, including the administration of the
commercial UNIX licences, to the Santa Cruz Operation (‘SCO’, sometimes
known as ‘old-SCO’, to contrast with the later ‘The SCO Group’, and later
renamed Tarantella).

By the late 1990s, GNU/Linux had emerged as a viable competitor to the
commercial UNIX distributions. IBM, Intel and SCO announced a joint project
in 1998 to finally merge the proprietary UNIX distributions and revive the
commercial UNIX industry, but the project failed in 2001. By this stage, most
development was being carried out on GNU/Linux, and the commercial vendors
(and particularly IBM) joined in, recognising the benefits of a business model
built around selling hardware and support solutions incorporating GNU/Linux
systems. IBM now carries on a large amount of development for GNU/Linux and
other free software projects.158

2 The Litigation
Caldera Systems Inc was a company that manufactured GNU/Linux distribu-

tions. In 2001, it bought the rights to UNIX from the Santa Cruz Operation, and

157 A kernel is the heart of an operating system: it provides software programs with access to a

computer’s hardware resources.
158 For a list of technical contributions IBM has made to Linux, see IBM, Open Source Projects

(2005) DeveloperWorks <http://www.ibm.com/developerworks/views/opensource/projects.jsp>.

— Open Source Software — Page 446 of 36 —

446 Melbourne University Law Review [Vol 29

later changed its name to ‘The SCO Group’ (‘SCO’). In March 2003, SCO
commenced an action against IBM in the United States District Court for the
District of Utah. SCO alleged that it was the successor in title of all rights and
interests in UNIX, which it derived from AT&T through a series of corporate
acquisitions, and hence controlled the rights of all UNIX vendors (including
IBM) to use and distribute UNIX. SCO’s causes of actions stemmed from its
allegations that IBM wrongfully used code and expertise developed by SCO (and
its predecessors) in developing some aspects of the Linux kernel.

Novell claimed that SCO was not the successor in title of all rights and inter-
ests in UNIX, but instead acted as an agent or franchisee for Novell. Novell
accordingly registered copyrights in UNIX, and SCO filed suit in the Utah State
Court for slander of title. The suit was removed to the Federal Court and
dismissed on the ground that SCO had not adequately specified special damages.
The case was dismissed without prejudice; SCO can refile at a later date.159

In its amended complaint against IBM,160 SCO is seeking US$3 billion in
damages, alleging that IBM breached the terms and conditions contained in
several Software Agreements relating to Unix System V source code by copying
or adapting code into the Linux kernel. SCO further alleges that IBM engaged in
unfair competition by aiding the development of Linux, and argues that in doing
so IBM misappropriated SCO’s trade secrets, particularly the knowledge and
design developed by SCO for running a UNIX-based system on Intel processors.

IBM has counterclaimed, alleging that SCO breached the terms in the Software
Agreements by purporting to terminate IBM’s perpetual and irrevocable UNIX
rights and that SCO has publicly misrepresented the legitimacy of IBM’s
Linux-related products and services, in violation of the Lanham Act 15 USC
§ 1051 (1946), and that SCO infringed four of IBM’s software patents. IBM also
alleges that by distributing Linux products, SCO agreed under the GPL not to
assert certain proprietary rights over the Linux source code, and that SCO has
breached its obligations under the GPL. The case is currently in the discovery
phase.161

In response to SCO’s claims that it will charge licence fees for commercial
users of GNU/Linux systems,162 Red Hat, a GNU/Linux distributor, has sued
SCO for false advertising and deceptive trade practices, and has asked for a
declaratory judgment of non-infringement of SCO’s copyright. This case has
been stayed pending the resolution of the case against IBM.163

SCO has also filed suit against two users of UNIX, DaimlerChrysler and
AutoZone. DaimlerChrysler was granted summary judgment against almost all

159 The SCO Group Inc v Novell Inc, No 2:04CV139DAK (D Utah, 9 June 2004). See also The SCO

Group Inc v Novell Inc, No 2:04CV139 DAK (D Utah, 27 June 2005).
160 Brent Hatch, David Boies and Stephen Zack, Plaintiff’s Amended Complaint, The SCO Group

Inc v International Business Machines Corp, No 03-CV-0294 (D Utah, 22 July 2003) <http://pl.
caldera.com/scoip/lawsuits/ibm/ibm-25.pdf>.

161 See SCO v IBM, No 2:03CV294 DAK (D Utah, 1 July 2005); SCO v IBM, No 2:03CV294 DAK
(D Utah, 19 April 2005). See generally The SCO Group, SCO v IBM Legal Filings (2005) The
SCO Group Inc Intellectual Property <http://www.caldera.com/scoip/lawsuits/ibm>.

162 The SCO Group, SCO Registers UNIX® Copyrights and Offers UNIX Licence (21 July 2003)
Investor Relations <http://ir.sco.com/ReleaseDetail.cfm?ReleaseID=114170>.

163 Red Hat Inc v The SCO Group Inc, Civ No 03-772-SLR (D Del, 6 April 2004).

— Open Source Software — Page 447 of 36 —

2005] Free and Open Source Software in Government 447

of SCO’s claims (the claim that DaimlerChrysler took too long to respond to
discovery is still on foot).164 The case against AutoZone has been stayed pending
resolution of the IBM, Red Hat and Novell cases.165

The suits filed by SCO have outraged the free software community. They do
not, however, seem to pose as great a threat to Linux as was first imagined.
SCO’s claims are mostly rooted in breaches of the contract its (alleged) prede-
cessors in title entered into with commercial vendors and users of UNIX, and
breaches of fiduciary duties between those same parties. The possibility that
SCO could have some proprietary claim to Linux is countered by the free
software community’s willingness to quickly rewrite any offending code.

VII CONCLUSION: THE CHOICE TO BE MADE

There are significant advantages to a broad government adoption of free
software. These include potential cost savings; adoption of open standards and
protocols; wider use of stronger, more flexible and more secure software; and the
social benefit derived from promoting a contributory commons of free software.
However, governments ought to be aware of the obligations that may be imposed
by the use and redistribution of FOSS, and when exactly these obligations will
arise. Governments must also be mindful of the effect that implied warranties
may have upon the sale or supply of free software by virtue of the TPA, or
similar consumer legislation, and the limitations inherent in indemnity clauses in
many free software licences.

Where a government is using public funds to develop a software application,
great care must be taken when choosing a licensing strategy. If there is a large
commercial market for the unmodified application, a traditional closed source
licensing approach can be used to generate income. If the only commercial
market for the software consists of software developers who would heavily
modify or integrate the software, then a dual licensing approach could be taken
to provide an income stream from those developers while still allowing the
benefits of publicly-funded software to flow back to the community. Finally,
where there is no commercial market for the software, and any sensitive or
confidential information has been removed, there is a strong argument that the
government should release the software under a free licence.

The evaluation of whether a government should use free or open source soft-
ware for any given application is a complex matter. However, with the continual
increase in quality and quantity of available solutions, coupled with increased
understanding of the advantages and obligations involved, we can expect to see
more widespread use of FOSS by governments across the world. In this context,
the challenge for lawyers and government officials will be to fully understand
the intricacies of this emerging area of law. This article is but one step in gaining
an appreciation of the legal landscape involved.

164 The SCO Group Inc v DaimlerChrysler Corp, Civ No 04-056587-CKB (D Mich, 9 August

2004).
165 The SCO Group Inc v Autozone Inc, Civ No CV-S-04-0237-RCJ-LRL (D Nev, 29 October

2004).

